• Title/Summary/Keyword: Intelligent transportation system

Search Result 625, Processing Time 0.03 seconds

The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market (개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석)

  • Jeon, Saemi;Chung, Yeojin;Lee, Dongyoup
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.81-96
    • /
    • 2016
  • As the internet has become widespread and easy to access everywhere, it is common for people to search information via online search engines such as Google and Naver in everyday life. Recent studies have used online search volume of specific keyword as a measure of the internet users' attention in order to predict disease outbreaks such as flu and cancer, an unemployment rate, and an index of a nation's economic condition, and etc. For stock traders, web search is also one of major information resources to obtain data about individual stock items. Therefore, search volume of a stock item can reflect the amount of investors' attention on it. The investor attention has been regarded as a crucial factor influencing on stock price but it has been measured by indirect proxies such as market capitalization, trading volume, advertising expense, and etc. It has been theoretically and empirically proved that an increase of investors' attention on a stock item brings temporary increase of the stock price and the price recovers in the long run. Recent development of internet environment enables to measure the investor attention directly by the internet search volume of individual stock item, which has been used to show the attention-induced price pressure. Previous studies focus mainly on Dow Jones and NASDAQ market in the United States. In this paper, we investigate the relationship between the individual investors' attention measured by the internet search volumes and stock price changes of individual stock items in the KOSDAQ market in Korea, where the proportion of the trades by individual investors are about 90% of the total. In addition, we examine the difference between industries in the influence of investors' attention on stock return. The internet search volume of stocks were gathered from "Naver Trend" service weekly between January 2007 and June 2015. The regression model with the error term with AR(1) covariance structure is used to analyze the data since the weekly prices in a stock item are systematically correlated. The market capitalization, trading volume, the increment of trading volume, and the month in which each trade occurs are included in the model as control variables. The fitted model shows that an abnormal increase of search volume of a stock item has a positive influence on the stock return and the amount of the influence varies among the industry. The stock items in IT software, construction, and distribution industries have shown to be more influenced by the abnormally large internet search volume than the average across the industries. On the other hand, the stock items in IT hardware, manufacturing, entertainment, finance, and communication industries are less influenced by the abnormal search volume than the average. In order to verify price pressure caused by investors' attention in KOSDAQ, the stock return of the current week is modelled using the abnormal search volume observed one to four weeks ahead. On average, the abnormally large increment of the search volume increased the stock return of the current week and one week later, and it decreased the stock return in two and three weeks later. There is no significant relationship with the stock return after 4 weeks. This relationship differs among the industries. An abnormal search volume brings particularly severe price reversal on the stocks in the IT software industry, which are often to be targets of irrational investments by individual investors. An abnormal search volume caused less severe price reversal on the stocks in the manufacturing and IT hardware industries than on average across the industries. The price reversal was not observed in the communication, finance, entertainment, and transportation industries, which are known to be influenced largely by macro-economic factors such as oil price and currency exchange rate. The result of this study can be utilized to construct an intelligent trading system based on the big data gathered from web search engines, social network services, and internet communities. Particularly, the difference of price reversal effect between industries may provide useful information to make a portfolio and build an investment strategy.

Big Data Based Dynamic Flow Aggregation over 5G Network Slicing

  • Sun, Guolin;Mareri, Bruce;Liu, Guisong;Fang, Xiufen;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4717-4737
    • /
    • 2017
  • Today, smart grids, smart homes, smart water networks, and intelligent transportation, are infrastructure systems that connect our world more than we ever thought possible and are associated with a single concept, the Internet of Things (IoT). The number of devices connected to the IoT and hence the number of traffic flow increases continuously, as well as the emergence of new applications. Although cutting-edge hardware technology can be employed to achieve a fast implementation to handle this huge data streams, there will always be a limit on size of traffic supported by a given architecture. However, recent cloud-based big data technologies fortunately offer an ideal environment to handle this issue. Moreover, the ever-increasing high volume of traffic created on demand presents great challenges for flow management. As a solution, flow aggregation decreases the number of flows needed to be processed by the network. The previous works in the literature prove that most of aggregation strategies designed for smart grids aim at optimizing system operation performance. They consider a common identifier to aggregate traffic on each device, having its independent static aggregation policy. In this paper, we propose a dynamic approach to aggregate flows based on traffic characteristics and device preferences. Our algorithm runs on a big data platform to provide an end-to-end network visibility of flows, which performs high-speed and high-volume computations to identify the clusters of similar flows and aggregate massive number of mice flows into a few meta-flows. Compared with existing solutions, our approach dynamically aggregates large number of such small flows into fewer flows, based on traffic characteristics and access node preferences. Using this approach, we alleviate the problem of processing a large amount of micro flows, and also significantly improve the accuracy of meeting the access node QoS demands. We conducted experiments, using a dataset of up to 100,000 flows, and studied the performance of our algorithm analytically. The experimental results are presented to show the promising effectiveness and scalability of our proposed approach.

Traffic Vulnerability Analysis of Rural Area using Road Accessibility and Functionality in Cheongju City (도로 접근성과 기능성을 이용한 통합청주시 농촌지역의 교통 취약성 분석)

  • Jeon, Jeongbae;Oh, Hyunkyo;Park, Jinseon;Yoon, Seongsoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.2
    • /
    • pp.11-21
    • /
    • 2015
  • This study carried out evaluation of vulnerability in accessability and functionality using road network that was extracted from Intelligent Transportation System(ITS) and digital map. It was built in order to figure out accessability that locational data which include community center, public facilities, medical facilities and highway IC. The method for grasping functionality are Digital Elevation Model(DEM) and land slide hazard map provided by Korea Forest Service. The evaluation criteria for figure out accessability was set to related comparison of average time in urban area. Functionality value was calculated by the possibility of backing the vehicle possibility of snowfall and landslides. At last, this research computed weighting value through Analytic Hierarchy Process (AHP), calculated a vulnerable score. As the result, the accessability of rural village came out that would spend more time by 1.4 to 3.2 times in comparison with urban area. Even though, vulnerability of the road by a snowfall was estimated that more than 50% satisfies the first class, however, it show up that the road were still vulnerable due snowing because over the 14% of the road being evaluated the fifth class. The functionality has been satisfied most of the road, however, It was vulnerable around Lake Daechung and Piban-ryung, Yumti-jae, Suriti-jae where on the way Boeun. Also, the fifth class road are about 35 km away from the city hall on distance, take an hour to an hour and a half. The fourth class road are about 25 km away from the city hall on distance, take 25 min to an hour. The other class of the road take in 30 min from the city hall or aren't affected of weather and have been analyzed that a density of road is high. In A result that compare between distribution and a housing density came out different the southern and the eastern area, so this result could be suggested quantitative data for possibility of development.

Prediction of Divided Traffic Demands Based on Knowledge Discovery at Expressway Toll Plaza (지식발견 기반의 고속도로 영업소 분할 교통수요 예측)

  • Ahn, Byeong-Tak;Yoon, Byoung-Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.521-528
    • /
    • 2016
  • The tollbooths of a main motorway toll plaza are usually operated proactively responding to the variations of traffic demands of two-type vehicles, i.e. cars and the other (heavy) vehicles, respectively. In this vein, it is one of key elements to forecast accurate traffic volumes for the two vehicle types in advanced tollgate operation. Unfortunately, it is not easy for existing univariate short-term prediction techniques to simultaneously generate the two-vehicle-type traffic demands in literature. These practical and academic backgrounds make it one of attractive research topics in Intelligent Transportation System (ITS) forecasting area to forecast the future traffic volumes of the two-type vehicles at an acceptable level of accuracy. In order to address the shortcomings of univariate short-term prediction techniques, a Multiple In-and-Out (MIO) forecasting model to simultaneously generate the two-type traffic volumes is introduced in this article. The MIO model based on a non-parametric approach is devised under the on-line access conditions of large-scale historical data. In a feasible test with actual data, the proposed model outperformed Kalman filtering, one of a widely-used univariate models, in terms of prediction accuracy in spite of multivariate prediction scheme.

Multi-Channel MAC Protocol Based on V2I/V2V Collaboration in VANET (VANET에서 V2I/V2V 협력 기반 멀티채널 MAC 프로토콜)

  • Heo, Sung-Man;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.96-107
    • /
    • 2015
  • VANET technologies provide real-time traffic information for mitigating traffic jam and preventing traffic accidents, as well as in-vehicle infotainment service through Telematics/Intelligent Transportation System (ITS). Due to the rapid increasement of various requirements, the vehicle communication with a limited resource and the fixed frame architecture of the conventional techniques is limited to provide an efficient communication service. Therefore, a new flexible operation depending on the surrounding situation information is required that needs an adaptive design of the network architecture and protocol for efficiently predicting, distributing and sharing the context-aware information. In this paper, Vehicle-to-Infrastructure (V2I) based on communication between vehicle and a Road Side Units (RSU) and Vehicle-to-Vehicle (V2V) based on communication between vehicles are effectively combined in a new MAC architecture and V2I and V2V vehicles collaborate in management. As a result, many vehicles and RSU can use more efficiently the resource and send data rapidly. The simulation results show that the proposed method can achieve high resource utilization in accordance. Also we can find out the optimal transmission relay time and 2nd relay vehicle selection probability value to spread out V2V/V2I collaborative schedule message rapidly.

Identity-Exchange based Privacy Preserving Mechanism in Vehicular Networks (차량 네트워크에서 신원교환을 통해 프라이버시를 보호하는 방법)

  • Hussain, Rasheed;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1147-1157
    • /
    • 2014
  • Intelligent transportation system (ITS) is realized through a highly ephemeral network, i.e. vehicular ad hoc network (VANET) which is on its way towards the deployment stage, thanks to the advancements in the automobile and communication technologies. However, it has not been successful, at least to date, to install the technology in the mass of vehicles due to security and privacy challenges. Besides, the users of such technology do not want to put their privacy at stake as a result of communication with peer vehicles or with the infrastructure. Therefore serious privacy measures should be taken before bringing this technology to the roads. To date, privacy issues in ephemeral networks in general and in VANET in particular, have been dealt with through various approaches. So far, multiple pseudonymous approach is the most prominent approach. However, recently it has been found out that even multiple pseudonyms cannot protect the privacy of the user and profilation is still possible even if different pseudonym is used with every message. Therefore, another privacy-aware mechanism is essential in vehicular networks. In this paper, we propose a novel identity exchange mechanism to preserve conditional privacy of the users in VANET. Users exchange their pseudonyms with neighbors and then use neighbors' pseudonyms in their own messages. To this end, our proposed scheme conditionally preserves the privacy where the senders of the message can be revoked by the authorities in case of any dispute.

Consideration of Technical Direction of Software Defined Vehicle Integration with C-ITS based on the analysis of In-Vehicle Infotainments (차량 인포테인먼트 아키텍처 분석 기반 향후 협력 지능형 교통 체계와 SDV 연동 방향성에 대한 고찰)

  • Joon-Young Kim;Young-Eun Kim;Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.149-156
    • /
    • 2024
  • The increased intelligence and speed of vehicle infotainment, whose main purpose was emergency and external communication, is showing the potential for application to various services such as navigation and autonomous driving. In particular, functionality for linking external devices and infrastructure is being strengthened due to advances in communication and networks. Under this trend, it is necessary to consider the direction of linkage with the cooperative intelligent transportation system (C-ITS) for advanced vehicle services and driving. In addition, in the case of automobiles, future vehicle development concepts are being established based on the concept of software-defined vehicles (SDVs) in line with the trend of electrification beyond telematics and infotainment advancements, and such SDV linkage must be considered at the same time. In this paper, we consider the future direction of ITS and SDV linkage based on analysis of vehicle infotainment structure. First, for this purpose, we analyze the existing vehicle infotainment structure and architecture, and also present the structure of the SDV linked to it. Based on this, analysis and implications are drawn on the possibility of applying and linking standard-based C-ITS services with SDV devices.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF