• Title/Summary/Keyword: Intelligent quantization

Search Result 68, Processing Time 0.026 seconds

Back-up Control of Truck-Trailer Vehicles with Practical Constraints: Computing Time Delay and Quantization

  • Kim, Youngouk;Park, Jinho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.391-402
    • /
    • 2015
  • In this paper, we present implementation of backward movement control of truck-trailer vehicles using a fuzzy mode-based control scheme considering practical constraints and computational overhead. We propose a fuzzy feedback controller where output is predicted with the delay of a unit sampling period. Analysis and design of the proposed controller is very easy, because it is synchronized with sampling time. Stability analysis is also possible when quantization exists in the implementation of fuzzy control architectures, and we show that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. Experimental results using a toy truck show that the proposed control system outperforms a conventional system.

Fuzzy Learning Vector Quantization based on Fuzzy k-Nearest Neighbor Prototypes

  • Roh, Seok-Beom;Jeong, Ji-Won;Ahn, Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.84-88
    • /
    • 2011
  • In this paper, a new competition strategy for learning vector quantization is proposed. The simple competitive strategy used for learning vector quantization moves the winning prototype which is the closest to the newly given data pattern. We propose a new learning strategy based on k-nearest neighbor prototypes as the winning prototypes. The selection of several prototypes as the winning prototypes guarantees that the updating process occurs more frequently. The design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the proposed learning strategy.

An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byeong-Hui;Jang, U-Seok;Gang, Hwan-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.267-271
    • /
    • 2007
  • 본 논문은 원본이미지와 은닉이미지의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 이미지은닉의 한 방법으로 특이치 분해와 퍼지 군집화를 이용한 벡터양자화를 이용한 워터마킹 방법을 소개하였다. 실험에서는 은닉된 이미지의 비가시성과 외부공격에 대한 강인성을 증명하였다.

  • PDF

STRUCTURED CODEWORD SEARCH FOR VECTOR QUANTIZATION (백터양자화가의 구조적 코더 찾기)

  • 우홍체
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.467-470
    • /
    • 2000
  • Vector quantization (VQ) is widely used in many high-quality and high-rate data compression applications such as speech coding, audio coding, image coding and video coding. When the size of a VQ codebook is large, the computational complexity for the full codeword search method is a significant problem for many applications. A number of complexity reduction algorithms have been proposed and investigated using such properties of the codebook as the triangle inequality. This paper proposes a new structured VQ search algorithm that is based on a multi-stage structure for searching for the best codeword. Even using only two stages, a significant complexity reduction can be obtained without any loss of quality.

  • PDF

A Performance Improvement of GLCM Based on Nonuniform Quantization Method (비균일 양자화 기법에 기반을 둔 GLCM의 성능개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.133-138
    • /
    • 2015
  • This paper presents a performance improvement of gray level co-occurrence matrix(GLCM) based on the nonuniform quantization, which is generally used to analyze the texture of images. The nonuniform quantization is given by Lloyd algorithm of recursive technique by minimizing the mean square error. The nonlinear intensity levels by performing nonuniformly the quantization of image have been used to decrease the dimension of GLCM, that is applied to reduce the computation loads as a results of generating the GLCM and calculating the texture parameters by using GLCM. The proposed method has been applied to 30 images of $120{\times}120$ pixels with 256-gray level for analyzing the texture by calculating the 6 parameters, such as angular second moment, contrast, variance, entropy, correlation, inverse difference moment. The experimental results show that the proposed method has a superior computation time and memory to the conventional 256-level GLCM method without performing the quantization. Especially, 16-gray level by using the nonuniform quantization has the superior performance for analyzing textures to another levels of 48, 32, 12, and 8 levels.

Adaptive Quantization of Image Sequence using the RBFN (RBFN 신경망을 이용한 동영상의 적응 양자화)

  • 안철준;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.271-274
    • /
    • 1997
  • This paper presents an adaptive quantization of image sequences using the Radial Basis Function Network(RBFN) which classifies interframe image blocks. The clssification algorithm consists of two steps. Blocks are classified into NA(No Activity), SA(Small Activity), VA(Verical Activity), and HA(Horizontal Activity) classes according to edges, image activity and AC anergy distribution. RBFN is trained using the classification results of the above algorithm, which are nonlinear classification features are acquired from the complexity and variability of difference blocks. Simulation result shows that the the adaptive quantization using the RBFN method produced better results better results than that of the sorting and MLP methods.

  • PDF

The Comparison of Speech Feature Parameters for Emotion Recognition (감정 인식을 위한 음성의 특징 파라메터 비교)

  • 김원구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.470-473
    • /
    • 2004
  • In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.

  • PDF

Adaptive Artificial Intelligent illuminator for User′s Characteristic (사용자 특성에 적응하는 새로운 지능 제어 시스템)

  • 정지원;유석용;손동설;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.361-369
    • /
    • 1999
  • In this paper, we propose a new intelligent control system to be adapted for the characteristic of user who use the plant. The proposed intelligent control system is composed of the artificial neural network, the teaming vector quantization network. In order to verify the usefulness of the proposed system, we simulated in using Matlab.

  • PDF

An Watermarking Method Based on Singular Vector Decomposition and Vector Quantization Using Fuzzy C-Mean Clustering (특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법)

  • Lee, Byung-Hee;Jang, Woo-Seok;Kang, Hwan-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.964-969
    • /
    • 2007
  • In this paper, we propose the image watermarking method for good compression ratio and satisfactory image quality of the cover image and the embedding image. This method is based on the singular value decomposition and the vector quantization using fuzzy c-mean clustering. Experimental results show that the embedding image has invisibility and robustness to various serious attacks. The advantage of this watermarking method is that we can achieve both the compression and the watermarking method for the copyright protection simultaneously.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.