• Title/Summary/Keyword: Intelligent information technology

Search Result 2,344, Processing Time 0.026 seconds

Building an Analytical Platform of Big Data for Quality Inspection in the Dairy Industry: A Machine Learning Approach (유제품 산업의 품질검사를 위한 빅데이터 플랫폼 개발: 머신러닝 접근법)

  • Hwang, Hyunseok;Lee, Sangil;Kim, Sunghyun;Lee, Sangwon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.125-140
    • /
    • 2018
  • As one of the processes in the manufacturing industry, quality inspection inspects the intermediate products or final products to separate the good-quality goods that meet the quality management standard and the defective goods that do not. The manual inspection of quality in a mass production system may result in low consistency and efficiency. Therefore, the quality inspection of mass-produced products involves automatic checking and classifying by the machines in many processes. Although there are many preceding studies on improving or optimizing the process using the data generated in the production process, there have been many constraints with regard to actual implementation due to the technical limitations of processing a large volume of data in real time. The recent research studies on big data have improved the data processing technology and enabled collecting, processing, and analyzing process data in real time. This paper aims to propose the process and details of applying big data for quality inspection and examine the applicability of the proposed method to the dairy industry. We review the previous studies and propose a big data analysis procedure that is applicable to the manufacturing sector. To assess the feasibility of the proposed method, we applied two methods to one of the quality inspection processes in the dairy industry: convolutional neural network and random forest. We collected, processed, and analyzed the images of caps and straws in real time, and then determined whether the products were defective or not. The result confirmed that there was a drastic increase in classification accuracy compared to the quality inspection performed in the past.

Facilitating Web Service Taxonomy Generation : An Artificial Neural Network based Framework, A Prototype Systems, and Evaluation (인공신경망 기반 웹서비스 분류체계 생성 프레임워크의 실증적 평가)

  • Hwang, You-Sub
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.33-54
    • /
    • 2010
  • The World Wide Web is transitioning from being a mere collection of documents that contain useful information toward providing a collection of services that perform useful tasks. The emerging Web service technology has been envisioned as the next technological wave and is expected to play an important role in this recent transformation of the Web. By providing interoperable interface standards for application-to-application communication, Web services can be combined with component based software development to promote application interaction both within and across enterprises. To make Web services for service-oriented computing operational, it is important that Web service repositories not only be well-structured but also provide efficient tools for developers to find reusable Web service components that meet their needs. As the potential of Web services for service-oriented computing is being widely recognized, the demand for effective Web service discovery mechanisms is concomitantly growing. A number of public Web service repositories have been proposed, but the Web service taxonomy generation has not been satisfactorily addressed. Unfortunately, most existing Web service taxonomies are either too rudimentary to be useful or too hard to be maintained. In this paper, we propose a Web service taxonomy generation framework that combines an artificial neural network based clustering techniques with descriptive label generating and leverages the semantics of the XML-based service specification in WSDL documents. We believe that this is one of the first attempts at applying data mining techniques in the Web service discovery domain. We have developed a prototype system based on the proposed framework using an unsupervised artificial neural network and empirically evaluated the proposed approach and tool using real Web service descriptions drawn from operational Web service repositories. We report on some preliminary results demonstrating the efficacy of the proposed approach.

A study on vulnerability analysis and incident response methodology based on the penetration test of the power plant's main control systems (발전소 주제어시스템 모의해킹을 통한 취약점 분석 및 침해사고 대응기법 연구)

  • Ko, Ho-Jun;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.2
    • /
    • pp.295-310
    • /
    • 2014
  • DCS (Distributed Control System), the main control system of power plants, is an automated system for enhancing operational efficiency by monitoring, tuning and real-time operation. DCS is becoming more intelligent and open systems as Information technology are evolving. In addition, there are a large amount of investment to enable proactive facility management, maintenance and risk management through the predictive diagnostics. However, new upcoming weaponized malware, such as Stuxnet designed for disrupting industrial control system(ICS), become new threat to the main control system of the power plant. Even though these systems are not connected with any other outside network. The main control systems used in the power plant usually have been used for more than 10 years. Also, this system requires the extremely high availability (rapid recovery and low failure frequency). Therefore, installing updates including security patches is not easy. Even more, in some cases, installing security updates can break the warranty by the vendor's policy. If DCS is exposed a potential vulnerability, serious concerns are to be expected. In this paper, we conduct the penetration test by using NESSUS, a general-purpose vulnerability scanner under the simulated environment configured with the Ovation version 1.5. From this result, we suggest a log analysis method to detect the security infringement and react the incident effectively.

A Study on the Research Trends on Domestic Platform Government using Topic Modeling (토픽 모델링을 활용한 한국의 플랫폼정부 연구동향 분석)

  • Suh, Byung-Jo;Shin, Sun-Young
    • Informatization Policy
    • /
    • v.24 no.3
    • /
    • pp.3-26
    • /
    • 2017
  • The amount of unstructured data generated online is increasing exponentially and the analysis of text data is being done in various fields. In order to identify the research trends on the platform government, the title, year, academic society, and abstract information of the academic papers on the subject of platform government were collected from the database of the domestic papers, DBPIA(www.dbpia.co.kr). The results of the existing research on the platform government and related fields were analyzed based on each stage of the national informatization promotion. The technology, service, and governance topics were extracted from papers on platform government and the trends of core topics were analyzed by year. Entering the era of the intelligent information society, this study has significance for providing the basis for defining a new role of government - the platform government that sets the stage for the private sector to lead the innovation, and plays the role of an 'enabler' and 'facilitator' instead. The purpose of this study is to understand the platform government research through objective analysis of its trends. Looking for future directions, this study will contribute to future research by providing reference materials.

A Structured Methodology with Device Collaboration Diagram for Evaluating Context-Aware Systems (장비협업도를 활용한 상황인식 시스템에 대한 구조적 평가 방법론)

  • Kwon, Oh-Byung;Lee, Nam-Yeon
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2007
  • Nowadays the context-aware systems have been regarded as a promising opportunity to create differentiated e-marketplaces. Context-aware system aims to provide personalized services by understanding the user's current situation which is automatically acquired from the context data. This aim naturally leads us to a motivation to evaluate to what extent a system is context-aware. Even though lots of endeavors have stated about the level of context-aware system, a structured evaluation has been so far very rare. Hence, the purpose of this paper is to propose a two-phased methodology for assessing context-aware systems. In the first phase, we perform a requisite analysis to discriminate a context-aware system from general or context-based systems. Once an information system is recognized as context-aware system, then level of collaboration, mobility and embeddedness is derived to determine the level of context-aware system in the second phase. To do so, device collaboration diagram (DCD) is proposed to visualize the system architecture. Moreover, readiness and level of system are Jointly considered in the phase to provide a development strategy for each context-aware system development project. To show the feasibility of the idea proposed in this paper, legacy context-aware systems are actually analyzed and evaluated.

  • PDF

A Preliminary Discussion on Policy Decision Making of AI in The Fourth Industrial Revolution (4차 산업혁명시대 인공지능 정책의사결정에 대한 탐색적 논의)

  • Seo, Hyung-Jun
    • Informatization Policy
    • /
    • v.26 no.3
    • /
    • pp.3-35
    • /
    • 2019
  • In the fourth industrial revolution age, because of advance in the intelligence information technologies, the various roles of AI have attracted public attention. Starting with Google's Alphago, AI is now no longer a fantasized technology but a real one that can bring ripple effect in entire society. Already, AI has performed well in the medical service, legal service, and the private sector's business decision making. This study conducted an exploratory analysis on the possibilities and issues of AI-driven policy decision making in the public sector. The three research purposes are i) could AI make a policy decision in public sector?; ii) how different is AI-driven policy decision making compared to the existing methods of decision making?; and iii) what issues would be revealed by AI's policy decision making? AI-driven policy decision making is differentiated from the traditional ways of decision making in that the former is represented by rationality based on sufficient amount of information and alternatives, increased transparency and trust, more objective views for policy issues, and faster decision making process. However, there are several controversial issues regarding superiority of AI, ethics, accountability, changes in democracy, substitution of human labor in the public sector, and data usage problems for AI. Since the adoption of AI for policy decision making will be soon realized, it is necessary to take an integrative approach, considering both the positive and adverse effects, to minimize social impact.

The Effect of Smart Learning User' Learning Motivation Factors on Education Achievement through Practical Value and Hedonic Value (스마트 러닝 이용자의 학습 동기요인이 실용적 가치와 헤도닉 가치를 통해 교육성과에 미치는 영향)

  • Mun, Jung Won;Kwon, Do soon;Kim, Seong Jun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • The appearance of education is also rapidly changing in social changes represented by social networks. And the development of information and communication technology is also having a widespread effect on the education field. In the era of untact caused by Covid-19, education through smart learning is having a greater effect on students as well as adult learners more quickly and broadly. In addition, smart learning is not just limited to learning content, but is developing into personalized, convergence, and intelligent. The purpose of this study is to identify the factors of ARCS motivation theory that can determine the learning motivation of smart learning users, and to empirically study the casual relationship between these factors on education achievement through practical value and hedonic value. Specifically, I would like to examine how the independent variables ARCS motivation factors (attention, relevance, confidence, and satisfaction) affect learners' education achievement through the parameters of practical value and hedonic value. To this end, a research model was presented that applied the main variables of attention, relevance, confidence, and satisfaction, which are four elements of ARCS motivation theory, a specific and systematic motivational strategy to induce and maintain learners' motivation. In order to empirically verify the research model of this study, a survey was carried out on learners with experience using smart learning. As a result of the study, first attention was found to have a positive effect on the hedonic value. Second, relevance was found to have a positive effect on the hedonic value. Third, it was found that confidence did not have a positive effect on the practical value and the hedonic value. Forth, satisfaction was found to have a positive effect on the practical value and the hedonic value. Fifth, practical value was found to have a positive effect on the education achievement. Sixth, hedonic value was found to have a positive effect on the education achievement. Through this, it can be seen that the intrinsic motivation of learners using smart learning affects the education achievement of users through intrinsic and extrinsic value. A variety of smart learning that combines advanced IT technologies such as AI and big data can contribute to improving learners' education achievement more effectively and efficiently. Furthermore, it can contribute a lot to social development.

A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet (LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구)

  • Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

Automatic TV Program Recommendation using LDA based Latent Topic Inference (LDA 기반 은닉 토픽 추론을 이용한 TV 프로그램 자동 추천)

  • Kim, Eun-Hui;Pyo, Shin-Jee;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.270-283
    • /
    • 2012
  • With the advent of multi-channel TV, IPTV and smart TV services, excessive amounts of TV program contents become available at users' sides, which makes it very difficult for TV viewers to easily find and consume their preferred TV programs. Therefore, the service of automatic TV recommendation is an important issue for TV users for future intelligent TV services, which allows to improve access to their preferred TV contents. In this paper, we present a recommendation model based on statistical machine learning using a collaborative filtering concept by taking in account both public and personal preferences on TV program contents. For this, users' preference on TV programs is modeled as a latent topic variable using LDA (Latent Dirichlet Allocation) which is recently applied in various application domains. To apply LDA for TV recommendation appropriately, TV viewers's interested topics is regarded as latent topics in LDA, and asymmetric Dirichlet distribution is applied on the LDA which can reveal the diversity of the TV viewers' interests on topics based on the analysis of the real TV usage history data. The experimental results show that the proposed LDA based TV recommendation method yields average 66.5% with top 5 ranked TV programs in weekly recommendation, average 77.9% precision in bimonthly recommendation with top 5 ranked TV programs for the TV usage history data of similar taste user groups.