• 제목/요약/키워드: Intelligent Technology

검색결과 4,105건 처리시간 0.028초

이미지 기반의 경험재, 텍스트 기반의 탐색재: 조절초점에 따른 제품 정보 구성 방식과 제품 유형의 일치 효과 (Image based Experience Goods, Text-based Search Goods: Cognitive Fit between Product Information Composition and Product Type depending on Regulatory Focus)

  • 박경희;서봉군;박도형
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.75-100
    • /
    • 2022
  • 코로나19가 장기화하면서 비대면 모바일 커머스 시장은 더욱더 치열한 경쟁 속에 있으며 기업들은 소비자에게 더 나은 쇼핑 경험을 제공하기 위하여 다각도의 노력을 하고 있다. 하지만 구매 결정에 중요한 역할을 하는 상세페이지는 대부분 비슷한 형태와 구성으로 소비자에게 제공되고 있다. 따라서 본 연구는 모바일 상세페이지의 상품 설명 영역의 정보 구성방식 (이미지 중심 vs 텍스트 중심)과 제품 유형 (탐색재 vs 경험재)에 따라 소비자들의 정보 인식이 달라져 제품 태도에 영향을 주는 것을 확인하였다. 즉 정보 탐색이 쉽고 품질 예측이 가능한 탐색재(Search Goods)의 경우는 이미지(Image) 중심 정보 구성 방식에서, 직접 경험하지 않으면 상품의 품질을 예측 불가능한 경험재(Experience Goods)의 경우에는 텍스트(Text) 중심의 정보 구성 방식에서 제품 태도에 더 긍정적인 영향을 미친다는 것을 알 수 있었다. 또한 Higgins의 자기조절초점(Self-Regulatory Focus) 이론을 적용하여 소비자의 조절초점 성향에 따라 제품 유형과 정보 구성 방식 간의 일치 효과는 다르게 나타난다는 결과를 확인하였다. 향상초점(Promotion Focus) 성향의 소비자는 제품 유형과 정보 구성 방식 간의 일치 효과가 나타났으며, 예방초점(Prevention Focus) 성향의 소비자는 제품 유형과 정보 구성 방식 간의 일치 효과가 나타나지 않았다. 구체적으로 향상초점 성향의 소비자는 경험재에 대하여 이미지 중심의 정보 구성 방식에서, 탐색재에 대해서는 텍스트 중심의 정보 구성 방식에서 더 긍정적인 제품 태도를 가진다는 결과를 확인하였고, 예방초점 성향의 소비자는 탐색재 및 경험재에 대하여 이미지 중심 또는 텍스트 중심의 정보 구성 방식을 제시하더라도 제품 태도에 영향을 미치지 못하는 것을 확인하였다. 본 연구는 모바일 쇼핑몰 상세페이지 상품 상세 영역에서 정보 구성 방식을 제품 유형과 소비자 성향을 고려하여 소비자에게 제공되어야 할 것이라는 시사점을 갖는다.

머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발 (Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning)

  • 임영우;엄지연;곽기영
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.307-325
    • /
    • 2023
  • 코로나19 팬데믹의 장기화로 인해 실내 생활에 지쳐가는 사람들이 우울감, 무기력증 등을 해소하기 위해 근거리의 산과 국립공원을 찾는 빈도가 폭발적으로 증가하였다. 자연으로 나온 수많은 사람들이 오가는 걸음을 멈추고 숨을 돌리며 쉬어가는 장소가 있는데 바로 약수터이다. 산이나 국립공원이 아니더라도 근린공원 또는 산책로에서도 간간이 찾아볼 수 있는 약수터는 수도권에만 약 6백여개가 위치해 있다. 하지만 불규칙적이고 수작업으로 수행되는 수질검사로 인해 사람들은 실시간으로 검사 결과를 알 수 없는 상태에서 약수를 음용하게 된다. 따라서 본 연구에서는 약수터 수질에 영향을 미치는 요인을 탐색하고 다양한 곳에 흩어져 있는 데이터를 수집하여 실시간으로 약수터 수질을 예측할 수 있는 모델을 개발하고자 한다. 데이터 수집의 한계로 인해 서울과 경기로 지역을 한정한 후 데이터 관리가 잘 이루어지고 있는 18개 시의 약 300여개 약수터를 대상으로 2015~2020년의 수질 검사 데이터를 확보하였다. 약수터 수질 적합 여부에 영향을 미칠 것으로 여겨지는 다양한 요인들 중 두 차례의 검토를 거쳐 총 10개의 요인을 최종 선별하였다. 최근 주목받고 있는 자동화 머신러닝 기술인 AutoML 기법을 활용하여 20여가지의 머신러닝 기법들 중 예측 성능 기준 상위 5개의 모델을 도출하였으며 그 중 catboost 모델이 75.26%의 예측 분류 정확도로 가장 높은 성능을 가지고 있음을 확인하였다. 추가로 SHAP 기법을 통해 분석에 사용한 변인들이 예측에 미치는 절대적인 영향력을 살펴본 결과 직전 수질 검사에서 부적합 판정을 받았는지 여부가 가장 중요한 요인이었으며 그 외 평균 기온, 과거 연속 2번 수질 부적합 판정 기록 유무, 수질 검사 당일 기온, 약수터 고도 등이 수질 부적합 여부에 영향을 미치고 있음을 확인하였다.

전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구 (A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service)

  • 공현정;황유진;박성혁
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.361-381
    • /
    • 2023
  • 기업 부도 예측에 관한 연구는 재무정보를 중심으로 연구되어 왔다. 기업의 재무정보는 분기별로 갱신되기 때문에 실시간으로 기업의 폐업 가능성을 예측하는 데 있어 적시성이 부족하게 되는 문제가 발생한다. 이를 개선하고자 하는 평가 기업에서는 대상 기업의 건전성을 판단하기 위한 재무정보 외의 정보를 활용한 기업의 건전성을 판단하는 방법이 필요하다. 이를 위해 정보 기술의 발달로 기업에 대한 비재무정보 수집이 용이해지면서 기업 부도 예측에 재무정보 외의 추가적인 변수와 여러 가지 방법론을 적용하는 연구가 진행되어 왔으며, 이 중에서도 어떤 변수들이 기업의 부도를 예측하는데 영향을 주는지를 밝히는 것이 중요한 연구 과제가 되었다. 본 연구에서는 전자결제서비스를 이용하는 사업자의 폐업을 예측할 때 비재무정보를 구성하는 전자결제 정보들이 얼마나 영향을 미치는지를 살펴보았으며, 재무정보와 비재무정보 결합에 따른 폐업 예측 정확도 차이를 살펴보았다. 구체적으로, 재무정보 모형과 비재무정보 모형, 그리고 이를 결합한 모형으로 구성된 세 가지 연구 모형을 설계하였으며 Multi Layer Perceptron(MLP) 알고리즘을 포함한 여섯 가지 알고리즘으로 폐업 예측 정확도를 확인하였다. 재무정보와 비재무정보를 결합한 모형이 가장 높은 예측 정확도를 보였으며, 그 다음으로는 비재무정보 모형, 재무정보 모형의 순서로 예측 정확도가 확인되었다. 알고리즘별 폐업 예측 정확도는 여섯 가지의 알고리즘 중 XGBoost가 가장 높은 예측 정확도를 보였다. 사업자의 폐업 예측에 활용된 전체 87개의 변수를 대상으로 상대적 중요도를 살펴본 결과 폐업 예측에 중요하게 영향을 미친 변수는 상위 20개 중 70% 이상이 비재무정보인 것으로 확인되었다. 이를 통해 비재무정보의 전자결제 정보가 사업자의 폐업을 예측하는 중요한 변수임을 확인하였으며, 비재무 정보가 재무정보의 대안적 정보로서 활용할 수 있는 가능성 역시 살펴볼 수 있었다. 본 연구를 기반으로 사업자의 폐업을 예측할 수 있는 정보로서 비재무정보의 수집과 활용에 대한 중요성을 인식하고 기업의 의사결정에 활용할 수 있는 방안에 대해서도 다루었다.

확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템 (A CF-based Health Functional Recommender System using Extended User Similarity Measure)

  • 홍세인;정의주;김재경
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.1-17
    • /
    • 2023
  • 정보통신기술의 발전과 디지털 기기의 대중화로 인해, 온라인 시장의 규모가 커지고 있다. 그 결과 고객들은 상품을 선택하는데 많은 시간과 비용이 소요되는 정보 과부하(Information Overload) 문제에 직면하고 있다. 따라서 고객이 선호할만한 상품을 추천해 주는 추천 시스템은 필수적인 도구가 되었으며 협업 필터링(Collaborative Filtering) 기법은 가장 널리 쓰이는 추천 방법이다. 전통적인 추천 시스템은 평점과 같은 정량적인 데이터만을 사용하기 때문에 추천의 정확도는 높지 않다. 이와 같은 문제를 해결하기 위해 요즘에는 사용자 리뷰와 같은 정성적 데이터를 반영하는 연구가 활발히 진행되고 있다. 협업 필터링의 일반적인 절차는 사용자-상품 행렬 생성, 이웃 집단 탐색, 추천 목록 생성 3단계로 구성되며 코사인 같은 사용자 유사도를 사용하여 목표 고객의 이웃을 탐색하며, 추천 상품 목록을 생성한다. 본 연구에서는 이웃 집단 탐색 및 추천 목록 생성 단계에서 사용하는 사용자 간의 유사도를 기존의 사용자 평점을 이용한 유사도에 고객의 리뷰 데이터를 사용하는 확장된 사용자 유사도를 제시한다. 리뷰를 정량화 하기 위해 본 연구에서는 텍스트 마이닝을 활용한다. 즉, 리뷰 데이터에 TF-IDF, Word2Vec, 그리고 Doc2Vec 기법을 사용하여 두 사용자 간의 리뷰 유사도를 구한 후 사용자 평점을 사용한 유사도와 리뷰 유사도를 결합한 확장된 유사도를 생성하는 것이다. 이를 검증하기 위해 전자상거래 사이트인 Amazon의 'Health and Personal Care'의 사용자 평점과 리뷰 데이터를 사용하였다. 실험 결과, 사용자 간 유사도를 산출할 때 기존의 평점에 기반한 유사도만을 사용하는 것보다, 사용자 리뷰의 유사도를 추가로 반영한 확장된 유사도를 사용하면 추천의 정확도가 높아진다는 것을 확인했다. 또한, 여러 텍스트 마이닝 기법 중에서 TF-IDF 기법을 사용한 확장된 유사도를 이웃 집단 탐색 및 추천 목록 생성단계에서 사용할 때의 성능이 가장 좋게 나타났다.

다이내믹 토픽 모델링의 의미적 시각화 방법론 (Semantic Visualization of Dynamic Topic Modeling)

  • 연진욱;부현경;김남규
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.131-154
    • /
    • 2022
  • 최근 방대한 양의 텍스트 데이터에 대한 분석을 통해 유용한 지식을 창출하는 시도가 꾸준히 증가하고 있으며, 특히 토픽 모델링(Topic Modeling)을 통해 다양한 분야의 여러 이슈를 발견하기 위한 연구가 활발히 이루어지고 있다. 초기의 토픽 모델링은 토픽의 발견 자체에 초점을 두었지만, 점차 시기의 변화에 따른 토픽의 변화를 고찰하는 방향으로 연구의 흐름이 진화하고 있다. 특히 토픽 자체의 내용, 즉 토픽을 구성하는 키워드의 변화를 수용한 다이내믹 토픽 모델링(Dynamic Topic Modeling)에 대한 관심이 높아지고 있지만, 다이내믹 토픽 모델링은 분석 결과의 직관적인 이해가 어렵고 키워드의 변화가 토픽의 의미에 미치는 영향을 나타내지 못한다는 한계를 갖는다. 본 논문에서는 이러한 한계를 극복하기 위해 다이내믹 토픽 모델링과 워드 임베딩(Word Embedding)을 활용하여 토픽의 변화 및 토픽 간 관계를 직관적으로 해석할 수 있는 방안을 제시한다. 구체적으로 본 연구에서는 다이내믹 토픽 모델링 결과로부터 각 시기별 토픽의 상위 키워드와 해당 키워드의 토픽 가중치를 도출하여 정규화하고, 사전 학습된 워드 임베딩 모델을 활용하여 각 토픽 키워드의 벡터를 추출한 후 각 토픽에 대해 키워드 벡터의 가중합을 산출하여 각 토픽의 의미를 벡터로 나타낸다. 또한 이렇게 도출된 각 토픽의 의미 벡터를 2차원 평면에 시각화하여 토픽의 변화 양상 및 토픽 간 관계를 표현하고 해석한다. 제안 방법론의 실무 적용 가능성을 평가하기 위해 DBpia에 2016년부터 2021년까지 공개된 논문 중 '인공지능' 관련 논문 1,847건에 대한 실험을 수행하였으며, 실험 결과 제안 방법론을 통해 다양한 토픽이 시간의 흐름에 따라 변화하는 양상을 직관적으로 파악할 수 있음을 확인하였다.

E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석 (Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System)

  • ;이병현;최일영;정재호;김재경
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.311-328
    • /
    • 2022
  • 정보통신기술 발달로 스마트폰이 보급되면서, 온라인 쇼핑몰 서비스는 컴퓨터가 아닌 모바일로도 사용이 가능해졌다. 그로 인해 온라인 쇼핑몰 서비스를 이용하는 사용자는 급격히 증가하게 되고, 거래되는 제품의 종류 또한 방대해지고 있다. 따라서 기업은 이익을 최대화하기 위해서는 사용자가 관심을 가질만한 정보를 제공해주는 것이 중요하다. 이를 위해 사용자의 과거 행동 데이터나 행동 구매 기록을 기반으로 사용자에게 필요한 정보 또는 제품을 제시하는 것을 추천 시스템이라 한다. 현재 추천 서비스를 제공하는 대표적인 해외 기업으로는 Netflix, Amazon, YouTube 등이 있다. 최근 이러한 전자상거래 사이트에서는 사용자가 해당 제품에 대한 리뷰가 유용한지에 대해 투표할 수 있는 기능을 제공하고 있다. 이를 통해, 사용자는 유용하다고 판단되는 제품에 대한 리뷰와 평점을 참고하여 구매 의사결정을 내린다. 따라서 본 연구에서는 제품에 대한 평점과 리뷰의 유용성 정보 간의 상관관계를 파악하고, 리뷰의 유용성 정보를 추천 시스템에 반영하여 추천 성능을 확인하고자 한다. 또한 대부분의 사용자들은 만족한 제품에만 평점을 부여하는 경향이 있고 제품에 대한 평점이 높을수록 구매 의도가 높아지는 경향이 있다. 따라서 전통적인 협업 필터링 기법에 모든 평점을 반영한 결과와 4점과 5점 평점만을 반영한 추천 성능 결과를 비교하고자 한다. 이를 위해 본 연구에서는 Amazon에서 수집한 전자 제품 데이터를 사용하였으며, 실험 결과는 평점과 리뷰 유용성 정보 간 상관관계가 있는 것으로 확인되었다. 또한 모든 평점과 4점과 5점 평점만을 추천 시스템에 반영하여 추천 성능을 비교한 결과, 4점과 5점 평점만을 추천 시스템에 반영한 결과의 추천 성능이 더 높게 나타났다. 그리고 리뷰 유용성 정보를 추천 시스템에 반영한 결과는 리뷰가 유용할수록 추천 성능은 높게 나타나는 것으로 확인하였다. 따라서 이러한 실험 결과는 향후 개인화 추천 서비스의 성능 향상에 기여하고, 전자상거래 사이트에 시사점을 제공할 수 있을 것으로 본다.

디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현 (Implementing RPA for Digital to Intelligent(D2I))

  • 최동진
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.143-156
    • /
    • 2019
  • 혁신의 유형은 단순화, 정보화, 자동화, 지능화로 분류할 수 있고 지능화는 혁신의 최상위 단계이며 RPA는 지능화의 하나로 볼 수 있다. 인공지능을 가미한 소프트웨어 로봇인 RPA(Robotic Process Automation)는 단순 반복적인 대량의 트랜젝션 처리 작업을 하는 곳에 적합한 지능화 사례이다. 이미 국내의 많은 기업들에서도 현재 운영 중에 있는 RPA는 강한조직 문화의 필요성이 증대되면서 자발적인 리더십, 강한 팀워크와 실행력, 프로답게 일하는 문화가 강조되는 상황에서 자연스럽게 핵심적 업무에 집중하기 위해 필요한 것이 무엇인지를 찾고자 하는 필요성에 따라 자연스럽게 도입이 검토되고 있다. 로봇 프로세스 자동화 또는 RPA는 구조적인 작업을 빠르고 효율적으로 처리하는 것을 목표로 인간 업무를 교체하는 기술이다. RPA는 ERP 시스템이나 생산성 도구와 같은 소프트웨어를 사용하여 사람을 모방한 소프트웨어 로봇을 통해 구현된다. RPA 로봇은 컴퓨터에 설치된 소프트웨어로 작동 원리에 의해 로봇으로 불리다. RPA는 백엔드를 통해 다른 IT 시스템과 통신하는 기존 소프트웨어와 달리 프런트 엔드를 통해 IT 시스템 전체에 통합된다. 실제로 이것은 소프트웨어 로봇이 인간과 똑 같은 방식으로 IT 시스템을 사용하고 정확한 단계를 반복하며 시스템의 API(Application Programming Interface)와 통신하는 대신 컴퓨터 화면의 이벤트에 반응하는 것을 의미한다. 다른 소프트웨어와 의사소통하기 위해 인간을 모방하는 소프트웨어를 설계하는 것은 직관력이 떨어질 수 있지만 이러한 접근 방식에는 여러 가지 이점이 있다. 첫째, 타사 응용 프로그램에 대한 개방성과 상관없이 사람이 사용하는 거의 모든 소프트웨어와 RPA를 통합할 수 있다. 많은 기업의 IT 시스템은 공통적으로 적용되는 API가 많지 않음으로 독점적이며 다른 시스템과의 통신 기능이 크게 제한되나 RPA는 이 문제를 해결한다. 둘째, RPA는 매우 짧은 시간 내에 구현될 수 있다. 엔터프라이즈 소프트웨어 통합과 같은 전통적인 소프트웨어 개발 방식은 상대적으로 많은 시간이 소요되지만 RPA는 2~4주의 상대적으로 짧은 시간에 구현할 수 있다. 셋째, 소프트웨어 로봇을 통해 자동화된 프로세스는 시스템 사용자가 쉽게 수정할 수 있다. 기존 방식은 작동 방식을 크게 수정하기 위해 고급 코딩 기술이 필요한 반면에 RPA는 상대적으로 단순한 논리 문장을 수정하거나 인간이 수행하는 프로세스의 화면 캡처 또는 그래픽 프로세스 차트 수정을 통해 지시받을 수 있다. 이로 인해 RPA는 매우 다양하고 유연하다. 이러한 RPA는 기업에서 추구하는 D2I(Digital to Intelligence)의 좋은 적용 사례이다.

온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측 (Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news)

  • 정지선;김동성;김종우
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.37-51
    • /
    • 2015
  • 인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.

데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석 (The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining)

  • 이수현;박정민;이형용
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.111-131
    • /
    • 2015
  • 본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다. 재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.

FCA 기반 계층적 구조를 이용한 문서 통합 기법 (Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis)

  • 김태환;전호철;최종민
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.63-77
    • /
    • 2011
  • 월드와이드웹(World Wide Web)은 인터넷에 연결된 컴퓨터를 통해 사람들이 정보를 공유할 수 있는 매우 큰 분산된 정보 공간이다. 웹은 1991년에 시작되어 개인 홈페이지, 온라인 도서관, 가상 박물관 등 다양한 정보 자원들을 웹으로 표현하면서 성장하였다. 이러한 웹은 현재 5천억 페이지 이상 존재할 것이라고 추정한다. 대용량 정보에서 정보를 효과적이며 효율적으로 검색하는 기술을 적용할 수 있다. 현재 존재하는 몇몇 검색 도구들은 초 단위로 gigabyte 크기의 웹을 검사하여 사용자에게 검색 정보를 제공한다. 그러나 검색의 효율성은 검색 시간과는 다른 문제이다. 현재 검색 도구들은 사용자의 질의에 적합한 정보가 적음에도 불구하고 많은 문서들을 사용자에게 검색해준다. 그러므로 대부분의 적합한 문서들은 검색 상위에 존재하지 않는다. 또한 현재 검색 도구들은 사용자가 찾은 문서와 관련된 문서를 찾을 수 없다. 현재 많은 검색 시스템들의 가장 중요한 문제는 검색의 질을 증가 시키는 것이다. 그것은 검색된 결과로 관련 있는 문서를 증가시키고, 관련 없는 문서를 감소시켜 사용자에게 제공하는 것이다. 이러한 문제를 해결하기 위해 CiteSeer는 월드와이드웹에 존재하는 논문에 대해 한정하여 ACI(Autonomous Citation Indexing)기법을 제안하였다. "Citaion Index"는 연구자가 자신의 논문에 다른 논문을 인용한 정보를 기술하는데 이렇게 기술된 논문과 자신의 논문을 연결하여 색인한다. "Citation Index"는 논문 검색이나 논문 분석 등에 매우 유용하다. 그러나 "Citation Index"는 논문의 저자가 다른 논문을 인용한 논문에 대해서만 자신의 논문을 연결하여 색인했기 때문에 논문의 저자가 다른 논문을 인용하지 않은 논문에 대해서는 관련 있는 논문이라 할지 라도 저자의 논문과 연결하여 색인할 수 없다. 또한 인용되지 않은 다른 논문과 연결하여 색인할 수 없기 때문에 확장성이 용이하지 못하다. 이러한 문제를 해결하기 위해 본 논문에서는 검색된 문서에서 단락별 명사와 동사 및 목적어를 추출하여 해당 동사가 명사 및 목적어를 취할 수 있는 가능한 값을 고려하여 하나의 문서를 formal context 형태로 변환한다. 이 표를 이용하여 문서의 계층적 그래프를 구성하고, 문서의 그래프를 이용하여 문서 간 그래프를 통합한다. 이렇게 만들어진 문서의 그래프들은 그래프의 구조를 보고 각각의 문서의 영역을 구하고 그 영역에 포함관계를 계산하여 문서와 문서간의 관계를 표시할 수 있다. 또한 검색된 문서를 트리 형식으로 보여주어 사용자가 원하는 정보를 보다 쉽게 검색할 수 있는 문서의 구조적 통합 방법에 대해 제안한다. 제안한 방법은 루씬 검색엔진이 가지고 있는 순위 계산 공식을 이용하여 문서가 가지는 중요한 단어를 문서의 참조 관계에 적용하여 비교하였다. 제안한 방법이 루씬 검색엔진보다15% 정도 높은 성능을 나타내었다.