구전(Word-of-Mouth) 활동은 오래 전부터 기업의 마케팅 과정에서 중요성을 인식하고 특히 마케팅 분야에서 많은 주목을 받아왔다. 최근에는 인터넷의 발달에 따라 온라인 뉴스, 온라인 커뮤니티 등에서 사람들이 지식과 정보를 주고 받는 방식이 다양해지면서 구전은 후기, 평점, 좋아요 등으로 입소문의 양상이 다각화되고 있다. 이러한 현상에 따라 구전에 관한 다양한 연구들이 선행되어왔으나, 이들을 종합적으로 분석한 메타 분석 연구는 부재하다. 본 연구는 학술 빅데이터를 활용해 구전 관련 연구동향을 알아내기 위해서 텍스트 마이닝 기법을 적용하여 주요 연구들을 추출하고 시기별로 연구들의 주요 쟁점을 파악하는 기법을 제안하였다. 이를 위해서 1941년부터 2018년까지 인용 데이터베이스인 Scopus에서 'Word-of-Mouth'라는 키워드로 검색되는 총 4389건의 문헌을 수집하였고, 영어 형태소 분석과 불용어 제거 등 전처리 과정을 통해 데이터를 정제하였다. 본 연구는 학문 분야의 발전 궤적을 추적하는 데 활용되는 주경로 분석기법을 적용해 구전과 관련된 핵심 연구들을 추출하여 연구동향을 거시적 관점에서 제시하였고, 단어동시출현 정보를 추출하여 키워드 간 네트워크를 구축하여 시기별로 구전과 관련된 연관어들이 어떻게 변화되었는지 살펴봄으로써 연구동향을 미시적 관점에서 제시하였다. 수집된 문헌 데이터를 기반으로 인용 네트워크를 구축하고 SPC 가중치를 적용하여 키루트 주경로를 추출한 결과 30개의 문헌으로 구성된 주경로가 추출되었고, 연관어 네트워크 분석을 통해서는 시기별로 온라인 시대, 관광 산업 등 다양한 산업군 등 산업 변화가 반영돼 시대적 변화와 더불어 발전하고 있는 학술적 영역의 변화를 확인할 수 있었다.
텍스트 데이터에 대한 다양한 분석을 위해 최근 비정형 텍스트 데이터를 구조화하는 방안에 대한 연구가 활발하게 이루어지고 있다. doc2Vec으로 대표되는 기존 문서 임베딩 방법은 문서가 포함한 모든 단어를 사용하여 벡터를 만들기 때문에, 문서 벡터가 핵심 단어뿐 아니라 주변 단어의 영향도 함께 받는다는 한계가 있다. 또한 기존 문서 임베딩 방법은 하나의 문서가 하나의 벡터로 표현되기 때문에, 다양한 주제를 복합적으로 갖는 복합 문서를 정확하게 사상하기 어렵다는 한계를 갖는다. 본 논문에서는 기존의 문서 임베딩이 갖는 이러한 두 가지 한계를 극복하기 위해 다중 벡터 문서 임베딩 방법론을 새롭게 제안한다. 구체적으로 제안 방법론은 전체 단어가 아닌 핵심 단어만 이용하여 문서를 벡터화하고, 문서가 포함하는 다양한 주제를 분해하여 하나의 문서를 여러 벡터의 집합으로 표현한다. KISS에서 수집한 총 3,147개의 논문에 대한 실험을 통해 복합 문서를 단일 벡터로 표현하는 경우의 벡터 왜곡 현상을 확인하였으며, 복합 문서를 의미적으로 분해하여 다중 벡터로 나타내는 제안 방법론에 의해 이러한 왜곡 현상을 보정하고 각 문서를 더욱 정확하게 임베딩할 수 있음을 확인하였다.
저출산 문제로 인한 병역자원 감소와 병 복무기간 단축에 따른 군 간부 대비 병 복무 선호 현상은 우수한 군 간부확보정책에 대한 추가적인 고찰을 필요로 한다. 이와 관련된 연구들은 대부분 사회과학에서 주로 사용되는 방법론으로 분석하였으나, 본 연구는 대량의 문헌조사에 적합한 텍스트 마이닝의 방법론으로 접근한다. 이를 위해, 본 연구는 공군 부사관 지원자 자기소개서에서 차별적인 특성의 단어들을 추출하고 합격 및 불합격의 극성을 분석한다. 본 연구는 총 3단계로 이루어졌다. 첫번째, 지원분야를 일반분야와 기술분야로 나누고, 자기소개서에서 특성을 가지는 단어들을 분야별 빈도수 비율의 차이대로 순서화 한다. 각 지원분야별 비율의 차이가 클수록 해당 지원분야의 특성을 나타내는 것으로 정의하였다. 두번째, 이 특성을 나타내는 단어들을 LDA를 통해 단어들의 Topic을 군집화하고 이를 바탕으로 Label을 정의하였다. 세번째, 이 군집화 된 지원분야별 단어들을 L-LDA를 통해 합격과 불합격의 극성을 분석하였다. L-LDA값의 차이가 합격에 가까울수록 합격자들이 많이 사용하는 단어로 정의하였다. 본 연구를 통해, 공군 부사관 자기소개서의 차별적 특성을 추출하기에는 LDA보다 L-LDA가 더 적합함을 알 수 있다. 또한, 이러한 방법론은 별도의 서면 또는 대면 설문 방식이 아니라, 대량 문서에 대한 텍스트 마이닝 기법을 적용하여 분석시간을 단축하고, 전체 모집단에 대한 신뢰성을 높일 수 있다. 따라서 본 연구인 공군 부사관 선발결과 분석을 통해, 선발제도 및 홍보제도에 활용 가능한 정보를 제공하고, 군 인력획득 분야 연구에 있어 활용 가능한 방법론을 제안하고자 한다.
4차 산업혁명 기술의 발전으로 사람이 처리하지 못하는 부분을 기계학습 등 인공지능 기법을 활용하여 개선해 보려는 노력이 확대되고 있다. 주문형 생산 기업에서도 주문에 대한 총생산시간을 예측하여 납기 지연 등의 기업 리스크를 줄이고자 하나 주문마다 총생산시간이 모두 달라 이를 예측하는데, 어려움을 겪고 있다. 주문 처리량 증대, 주문 총비용 절감을 위해 효율성이 가장 낮은 영역을 찾아 그 영역을 강화하는 TOC(Theory of constraints) 이론이 개발되었으나 총생산시간 예측은 제시하지 못하였다. 주문생산은 고객의 다양한 요구로 인해 주문마다 그 특성이 모두 다르므로 개별적인 주문의 총생산시간을 사후에 측정할 수는 있으나 사전 예측을 하기는 어렵다. 기존 주문의 이미 측정된 총생산시간도 모두 달라 표준 시간으로 활용할 수 없는 한계성이 있다. 이에 따라 경험이 많은 관리자는 시스템의 이용보다는 감에 의존하고 있고, 경험이 부족한 관리자는 간단한 관리지표(예, 원재료가 파이프이면 총생산시간 60일, 철판이면 총생산시간 90일 등)를 사용하고 있다. 불완전한 감이나 지표를 기초로 하여 작업 지시를 너무 빨리하면 정체가 발생하여 생산성이 저하되고, 너무 늦게 하면 긴급 처리로 인해 생산비용이 증가하거나 납기를 지키지 못하는 경우가 발생한다. 납기를 지키지 못하면 지체상금을 배상해야 하거나 영업, 수금 등의 부문에 악영향을 미친다. 본 연구에서는 이러한 문제를 해결하기 위하여 주문생산시스템을 운영하는 기업의 신규 주문 총생산시간을 추정하는 기계학습 모델을 찾고자 한다. 기계학습에 활용된 자료는 수주, 생산, 공정 실적을 사용한다. 그리고 총생산시간의 추정에 가장 적합한 알고리즘으로 OLS, GLM Gamma, Extra Trees, Random Forest 알고리즘 등을 비교 분석하고 그 결과를 제시하고자 한다.
최근 전 세계적으로 기업의 환경(Environmental)·사회(Social)·지배구조(Governance)의 비재무적 요소를 고려한 지속가능경영이 필수적으로 요구되면서, 각 기업들은 이에 대응할 수 있는 전략적 방향 수립이 중요해지고 있다. 특히 기업이 속한 산업별로 상이한 ESG 이슈에 대한 이해를 바탕으로 산업과 개별 기업의 특성을 반영한 전략을 개발하고 추진할 수 있어야 할 것이다. 이에 본 연구에서는 금융, 제조, IT 분야별로 나누어 주요 국내 기업들의 ESG 보고서와 관련 뉴스 기사를 이용하여 산업별 ESG 동향과 활동을 비교 분석하였다. 키워드 빈도분석과 토픽 모델링을 활용한 분석 결과, 국내 ESG 선도 기업들의 지속가능경영 활동에서의 산업별 차이를 도출 할 수 있다. 금융 분야에서는 '고객 중심 경영'과 '기후 변화 대응', 제조 분야에서는 '지속가능한 공급망 관리'와 '탄소중립', IT 분야에서는 '기술혁신'과 '디지털 책임'이 강조되었다. ESG 요소별 우선 순위가 높은 활동의 예를 들면, 환경 측면에서는 '에너지 절감과 친환경 활동', 사회 측면에서는 '사회공헌과 상생', 지배구조 측면에서는 '이사회 독립성 강화와 리스크 관리' 등으로 나타났다. 더 나아가 산업별 각 ESG 요소의 핵심 이슈 뿐 아니라 ESG 보고서와 뉴스 기사의 내용 유사성 및 차별점도 확인하였다. 연구의 결과는 산업별 동향을 고려한 ESG 경영 전략 및 정책의 방향성을 제시하고 있으며 이는 산업별 ESG 평가체계 수립에도 도움이 될 것으로 기대한다.
달 현지 탐사를 위해 무인 이동체에 대한 연구가 지속적으로 이루어져 있으며 달 지상 관심 지역의 정확한 위치 및 맵핑을 위한 실시간 정보화 작업이 요구되고 있다. 딥러닝 영상 처리 분석 기술을 실제 로버에 적용하기 위해 소프트웨어의 통합과 최적화에 대한 연구가 필요하며 본 연구에서는 가상의 달 기지 건설현장의 영상을 실시간 분석하여 핵심 객체의 공간 정보를 자동으로 수치화하는 방안에 대한 기초 연구가 진행되었다. 본 연구를 통해 이미 구축된 영역 분할 기반 객체 인식 알고리즘을 경계 상자 기반 객체 인식알고리즘으로 변경하여 객체 인식 정확도 및 추론 속도를 개선하는 작업이 이루어졌으며, 대용량 데이터 기반 객체 매칭 학습을 위해 Batch Hard Triplet Mining 기법을 도입하고, 학습 및 추론에 대한 최적화 연구가 수행되었다. 또한 개선된 객체 인식 및 동일 객체 매칭 소프트웨어를 통합하고, 입력 이미지 내 동일 객체 자동 매칭을 시각화하는 소프트웨어를 개발하였으며, 위성 모사 촬영 영상 내 객체를 학습 데이터로, 이동체 촬영 영상 내 객체를 추론 데이터로 사용하여 동일 객체 매칭의 학습 및 추론이 이루어졌다. 본 연구의 결과는 이동체의 연속 촬영 영상을 기반 3차원 공간 정보를 구현 및 관심 공간 내 객체 위치 설정에 활용할 수 있을 것으로 사료되며, 향후 달 기지 건설 현장에서의 영상 기반 시공 모니터링 및 제어를 위한 자동 현장 및 주요 대상물 공간 정보 구축 시스템과의 연계에 기여할 것으로 기대된다.
유사시 종심 깊숙한 곳에서 적을 타격하는 임무를 수행하는 항공기의 경우 격추될 위험에 항시 노출되어 있다. 현대전의 핵심 전투력으로써 최첨단의 무기체계를 운용하는 공중근무 요원은 양성하는데 많은 시간과 노력, 국가 예산이 소요되며 그들이 가진 작전 능력과 군사기밀이 매우 중요하기에 공중근무 요원의 생환은 매우 중요한 문제이다. 따라서, 본 연구에서는 적지에서 비상탈출한 조난자가 장애물을 피해 목표지점까지 도피·탈출을 시행할 경로를 예측하는 경로 문제를 연구하였으며 이를 통해 비상탈출한 조난자의 무사 생환 가능성을 높이고자 하였다. 본 연구 주제와 관련된 기존 연구들은 경로 문제를 네트워크 기반 문제로 접근하여 TSP, VRP, Dijkstra 알고리즘 등으로 문제를 변형하여 최적화 기법으로 접근한 연구가 있었다. 본 연구에서는 동적 환경을 모델링 하기에 적합한 MDP(마코프 의사결정과정)를 적용하여 연구하였다. 또한 GIS를 이용하여 지형정보 데이터를 추출하여 활용함으로써 모형의 객관성을 높였으며, MDP의 보상구조를 설계하는 과정에서 기존 연구 대비 모형이 좀 더 현실성을 가질 수 있도록 보다 상세히 지형정보를 반영하였다. 본 연구에서는 조난자가 지형적 이점을 최대한 이용함과 동시에 최단거리로 이동할 수 있는 경로를 도출하기 위하여 가치 반복법 알고리즘, 결정론적 방법론을 사용하였으며 실제 지형정보와 조난자가 도피·탈출 과정에서 만날 수 있는 장애요소들을 추가하여 모형의 현실성을 더하고자 하였다. 이를 통해 조난자가 조난 상황에서 어떠한 경로를 통해 도피·탈출을 수행할지 예측해 볼 수 있었다. 본 연구에서 제시한 모형은 보상구조의 재설계를 통해 여러 가지 다양한 작전 상황에 응용이 가능하며 실제 상황에서 조난자의 도피·탈출 경로를 예측하고 전투 탐색구조 작전을 진행시키는 데 있어 다양한 요소가 반영된 과학적인 기법에 근거한 의사결정 지원이 가능할 것이다.
혁신의 유형은 단순화, 정보화, 자동화, 지능화로 분류할 수 있고 지능화는 혁신의 최상위 단계이며 RPA는 지능화의 하나로 볼 수 있다. 인공지능을 가미한 소프트웨어 로봇인 RPA(Robotic Process Automation)는 단순 반복적인 대량의 트랜젝션 처리 작업을 하는 곳에 적합한 지능화 사례이다. 이미 국내의 많은 기업들에서도 현재 운영 중에 있는 RPA는 강한조직 문화의 필요성이 증대되면서 자발적인 리더십, 강한 팀워크와 실행력, 프로답게 일하는 문화가 강조되는 상황에서 자연스럽게 핵심적 업무에 집중하기 위해 필요한 것이 무엇인지를 찾고자 하는 필요성에 따라 자연스럽게 도입이 검토되고 있다. 로봇 프로세스 자동화 또는 RPA는 구조적인 작업을 빠르고 효율적으로 처리하는 것을 목표로 인간 업무를 교체하는 기술이다. RPA는 ERP 시스템이나 생산성 도구와 같은 소프트웨어를 사용하여 사람을 모방한 소프트웨어 로봇을 통해 구현된다. RPA 로봇은 컴퓨터에 설치된 소프트웨어로 작동 원리에 의해 로봇으로 불리다. RPA는 백엔드를 통해 다른 IT 시스템과 통신하는 기존 소프트웨어와 달리 프런트 엔드를 통해 IT 시스템 전체에 통합된다. 실제로 이것은 소프트웨어 로봇이 인간과 똑 같은 방식으로 IT 시스템을 사용하고 정확한 단계를 반복하며 시스템의 API(Application Programming Interface)와 통신하는 대신 컴퓨터 화면의 이벤트에 반응하는 것을 의미한다. 다른 소프트웨어와 의사소통하기 위해 인간을 모방하는 소프트웨어를 설계하는 것은 직관력이 떨어질 수 있지만 이러한 접근 방식에는 여러 가지 이점이 있다. 첫째, 타사 응용 프로그램에 대한 개방성과 상관없이 사람이 사용하는 거의 모든 소프트웨어와 RPA를 통합할 수 있다. 많은 기업의 IT 시스템은 공통적으로 적용되는 API가 많지 않음으로 독점적이며 다른 시스템과의 통신 기능이 크게 제한되나 RPA는 이 문제를 해결한다. 둘째, RPA는 매우 짧은 시간 내에 구현될 수 있다. 엔터프라이즈 소프트웨어 통합과 같은 전통적인 소프트웨어 개발 방식은 상대적으로 많은 시간이 소요되지만 RPA는 2~4주의 상대적으로 짧은 시간에 구현할 수 있다. 셋째, 소프트웨어 로봇을 통해 자동화된 프로세스는 시스템 사용자가 쉽게 수정할 수 있다. 기존 방식은 작동 방식을 크게 수정하기 위해 고급 코딩 기술이 필요한 반면에 RPA는 상대적으로 단순한 논리 문장을 수정하거나 인간이 수행하는 프로세스의 화면 캡처 또는 그래픽 프로세스 차트 수정을 통해 지시받을 수 있다. 이로 인해 RPA는 매우 다양하고 유연하다. 이러한 RPA는 기업에서 추구하는 D2I(Digital to Intelligence)의 좋은 적용 사례이다.
국내 소프트웨어(SW) 개발인력의 미충원율은 매우 높으며, 특히 2년 이상의 현장경력이 있는 고급 개발자의 부족문제는 심각하다. 최근 정부도 이를 인식하고, 정책적으로 SW개발 신규인력 양성에 힘을 기울이고 있다. 그러나, 이러한 노력은 초급개발자의 수급문제를 해결하는데 효과적일 수 있지만, 업계에서 요구하는 고급 개발자의 부족현상을 해결하는 근본적인 대책으로 인식되지는 못하고 있다. SW 전문개발자를 양성하기 위해서는 초급개발자들이 지속적으로 직무를 수행하여 풍부한 업무경험을 갖춘 고급 개발자로 성장해야 하기 때문이다. 이에, 본 연구는 국내 SW업체에서 근무하고 있는 개발관련 인력들의 업무 지속수행 의도를 조사하고, 이에 영향을 주는 주요요인들을 분석하였다. 이를 위해, 2014년 9월부터 10월까지 국내 SW업체에 근무하고 있는 현직 개발자 총 130명을 대상으로 설문조사를 수행하였으며, 이를 기반으로 SW개발업무 지속수행의도 및 이에 영향을 주는 요인들을 개발자의 특성, 직무환경, 그리고 SW개발자에 대한 사회적 인식 및 산업전망 등의 측면에서 분석하였다. 분석에는 데이터마이닝 기법들 중에서, 분석과정에서의 설명능력이 있는 회귀분석과 의사결정나무가 사용되었다. 회귀분석 결과, SW개발자가 스스로 인식하는 근무 가능한 연령이 높을수록, 내성적인 성향을 가질수록, 또한 적성에 맞아서 직무를 선택한 경우, 지속적 직무 수행 의도가 높은 것으로 나타났다. 이와 더불어, 선형회귀분석에서는 유의하지 않았으나, 규칙기반의 의사결정나무 분석에서 파악된 추가적 요인으로, 새로운 기술에 대한 학습능력 및 SW산업에 대한 전망이 직무 지속수행의도에 영향을 미치는 것으로 나타났다. 이러한 연구결과는 기업의 인적자원관리 및 고급 SW인력 양성정책에 활용될 수 있을 것으로 생각되며, 궁극적으로 SW개발인력의 직무 지속성을 증진시키는 데 기여할 수 있을 것으로 기대된다.
최근 다양한 분야에서 새로운 기술이 출현하고 있으며, 이들 대부분은 기존 기술들의 융합(Convergence)을 통해 형성되고 있다. 또한 가까운 미래에 출현하게 될 유망한 융합 기술을 예측함으로써 변화하는 기술 지형에 선제적으로 대응하기 위한 수요가 꾸준히 증가하고 있으며, 이러한 수요에 부응하여 많은 기관과 연구자들은 미래 유망 융합 기술 예측을 위한 분석을 수행하고 있다. 하지만 이와 관련한 기존의 많은 연구들은 (i) 고정된 기술 분류 기준을 분석에 사용함으로써 기술 분야의 동적 변화를 반영하지 못했다는 점, (ii) 예측 모형 수립 과정에서 주로 범용성 네트워크 지표를 사용함으로써 기술의 융합이라는 목적에 부합하는 고유 특성을 활용하지 못했다는 점, 그리고 (iii) 유망 분야 예측 모형의 정확성 평가를 위한 객관적 방법을 제시하지 못했다는 점 등에서 한계를 갖고 있다. 이에 본 연구에서는 (i) 토픽 모델링을 통해 기존의 고정된 분류 기준이 아닌 실제 기술시장의 동적 변화에 따른 새로운 기술군을 도출하고, (ii) 기술 성숙도 및 기술군 간 의존 관계에 따라 각 기술군의 융합적 특성을 반영하는 잠재 성장 중심성(Potential Growth Centrality) 지표를 산출하였으며, (iii) 잠재 성장 중심성에 근거하여 예측한 유망 기술의 성숙도 증가량을 시기별로 측정하여 예측 모형의 정확도를 평가하는 방안을 제시한다. 이와 더불어 제안 방법론의 성능 및 실무 적용 가능성의 평가를 위해 특허 문서 13, 477건에 대한 실험을 수행하였으며, 실험 결과 제안한 잠재 성장 중심성에 따른 예측 모형이 단순히 현재 활용되는 영향도 기반의 예측 모형에 비해 최대 약 2.88배 높은 예측 정확도를 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.