• Title/Summary/Keyword: Intelligent Robots

Search Result 539, Processing Time 0.029 seconds

Three Dimensional Environment Modeling for Mobile Robots Using Growing Neural Gas Network

  • Kim, Min-Young;Cho, Hyung-Suck;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.30.2-30
    • /
    • 2001
  • As the era of the human friendly robot looms, the intelligent autonomous mobile robots have obtained tremendous interests in recent years. The robots may be service robots for serving human or industrial robots for replacing human. For the coexistance with human, the robots must be able to feel and recognize three dimensional space that human live. In this paper, we propose three dimensional environmental modeling method based on a neural network technique called Growing Neural Gas Network. The purpose of this neural network is to generate a graphical structure which reflects the topology of the input space. Through this method, the robots´ surroundings are autonomously segmented ...

  • PDF

A Logical Cell-Based Approach for Robot Component Repositories (논리적 셀 기반의 로봇 소프트웨어 컴포넌트 저장소)

  • Koo, Hyung-Min;Ko, In-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.731-742
    • /
    • 2007
  • Self-growing software is a software system that has the capability of evolving its functionalities and configurations by itself based on dynamically monitored situations. Self-growing software is especially necessary for intelligent service robots, which must have the capability to monitor their surrounding environments and provide appropriate behaviors for human users. However, it is hard to anticipate all situations that robots face with, and it is hard to make robots have all functionalities for various environments. In addition, robots have limited internal capacity. To support self-growing software for intelligent service robots, we are developing a cell-based distributed repository system that allows robots and developers transparently to share robot functionalities. To accomplish the creation of evolutionary repositories, we invented the concept of a cell, which is a logical group of distributed repositories based upon the functionalities of components. In addition, a cell can be used as a unit for the evolutionary growth of the components within the repositories. In this paper, we describe the requirements and architecture of the cell-based repository system for self-growing software. We also present a prototype implementation and experiment of the repository system. Through the cell-based repositories, we achieve improved performance of self-growing actions for robots and efficient sharing of components among robots and developers.

Object Directive Manipulation Through RFID

  • Chong, Nak-Young;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2731-2736
    • /
    • 2003
  • In highly informative, perception-rich environments that we call Omniscient Spaces, robots interact with physical objects which in turn afford robots the information showing how the objects should be manipulated. Object manipulation is commonly believed one of the most basic tasks in robot applications. However, no approaches including visual servoing seem satisfactory in unstructured environments such as our everyday life. Thus, in Omniscient Spaces, the features of the environments embed themselves in every entity, allowing robots to easily identify and manipulate unknown objects. To achieve this end, we propose a new paradigm of the interaction through Radio Frequency Identification (RFID). The aim of this paper is to learn about RFID and investigate how it works in object manipulation. Specifically, as an innovative trial for autonomous, real-time manipulation, a likely mobile robot equipped with an RFID system is developed. Details on the experiments are described together with some preliminary results.

  • PDF

Fuzzy Footstep Planning for Humanoid Robots Using Locomotion Primitives (보행 프리미티브 기반 휴머노이드 로봇의 퍼지 보행 계획)

  • Kim, Yong-Tae;Noh, Su-Hee;Han, Nam-I
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.7-10
    • /
    • 2007
  • This paper presents a fuzzy footstep planner for humanoid robots in complex environments. First, we define locomotion primitives for humanoid robots. A global planner finds a global path from a navigation map that is generated based on a combination of 2.5 dimensional maps of the 3D workspace. A local planner searches for an optimal sequence of locomotion primitives along the global path by using fuzzy footstep planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

  • PDF

An Adaptive Goal-Based Model for Autonomous Multi-Robot Using HARMS and NuSMV

  • Kim, Yongho;Jung, Jin-Woo;Gallagher, John C.;Matson, Eric T.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • In a dynamic environment autonomous robots often encounter unexpected situations that the robots have to deal with in order to continue proceeding their mission. We propose an adaptive goal-based model that allows cyber-physical systems (CPS) to update their environmental model and helps them analyze for attainment of their goals from current state using the updated environmental model and its capabilities. Information exchange approach utilizes Human-Agent-Robot-Machine-Sensor (HARMS) model to exchange messages between CPS. Model validation method uses NuSMV, which is one of Model Checking tools, to check whether the system can continue its mission toward the goal in the given environment. We explain a practical set up of the model in a situation in which homogeneous robots that has the same capability work in the same environment.

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Work Consideration of Leg Joints of Bipedal Robots (이족 로봇 다리 관절의 일 특성 고찰)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.238-243
    • /
    • 2013
  • This paper analyzes a virtual work of the knee and hip joints of bipedal walking robots. For the purpose, we consider a model of bipedal leg mechanism with a compliant foot and a typical walking pattern. We also check the torque characteristics at the joint space propagated from the space of the foot contacting a flat and stiff surface, and present the works accumulated at the joint space. As a result, it is shown that this analysis is useful for evaluating the fatigue of the leg mechanism by the physical walking contact between the foot and the surface, and it is applicable for improving the compliant characteristics at the foot space by employing a proper footgear.

Implementation of an Intelligent Robot Control System Based on UPnP (UPnP 기반 지능형 로봇 제어 시스템 구현)

  • Kim, Seong-Woo;Park, Yoo-Hyun;Kwon, Soon-Kak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2129-2136
    • /
    • 2012
  • With the increased demand of ubiquitous home services, intelligent robots have wide attentions. This kind of robots offer various services through middleware components which can connect with remote servers. In this paper we present an UPnP(Universal Plug and Play) based open-source software framework which makes control the robots remotely. This UPnP architecture for home networking can provide various communication methodologies like command control, eventing, presentation with web services and so on. This paper shows successful implementation results on two real platforms.

Young Children's Perception of Intelligent Service Robots and Child-Robot Interactions (유아교육용 로봇에 대한 유아의 인식 및 유아-로봇 간 상호작용의 특성)

  • Yoon, Hyun-Min;Hyun, Eun-Ja
    • Korean Journal of Child Studies
    • /
    • v.33 no.1
    • /
    • pp.237-259
    • /
    • 2012
  • The purpose of this study is to examine how children perceived the use of intelligent service robots in early childhood education and identifying the characteristics of the interaction between the children concerned and the robots. The subjects of this study were 49 kindergarten students from Girin Kindergarten in Gyeonggi-do. The results of this study suggested that the children personalized the robot and recognized it as their friend, regardless of their ages. In the interactions between the children and the robot, the children engaged in physical contact with the robot and occasionally tried to control its functions. In the child-robot interaction, the children searched their favorite functions and used them repeatedly, but also lost interest in those repeated functions. Regardless of their interest levels, however, the attendance or portfolio organization functions. With regard to the interaction between peers, there were frequent quarrels regarding the use of the robot at first, but these conflicts were resolved by the intervention of peers or teachers, and the children who were familiar with the use of the robot helped their friends; this was viewed as constituting cooperative behavior. Children usually used the robot with their friends. The robot was a medium for children to find new friends. Peer group activities were explored and new friendships were created as a result of the use of the robot.