• Title/Summary/Keyword: Intelligent Robot Control

Search Result 730, Processing Time 0.037 seconds

Development of Intelligent Robot's Hand with Three-Axis Finger Force Sensors for Intelligent Robot (3축 손가락 힘센서를 가진 지능로봇의 지능형 로봇손 개발)

  • Kim, Gab-Soon;Shin, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.300-305
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three-axis finger force sensors for an intelligent robot. In order to grasp an unknown object safely, it should measure the mass of the object, and determine the grasping force using the mass, then control the robot's fingers with the grasping force. In this paper, the intelligent robot's hand for an intelligent robot was developed. First, the three-axis finger force sensors were designed and manufactured, second, the intelligent robot's hand with three-axis finger force sensors were designed and fabricated, third, the high-speed control system was designed and manufactured using DSP( digital signal processor), finally, the characteristic test to grasp an unknown object safely was carried out. It was confirmed that the developed intelligent robot's hand could grasp an unknown object safely.

Intelligent Hybrid Modular Architecture for Multi Agent System

  • Lee, Dong-Hun;Baek, Seung-Min;Kuc, Tae-Yong;Chung, Chae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.896-902
    • /
    • 2004
  • The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. To make real time control possible by making effective use of recognized information in this dynamic environment, suitable distribution of tasks should be made in consideration of function and role of each performing robots. In this paper, IHMA (Intelligent Hybrid Modular Architecture) of Intelligent combined control architecture which utilizes the merits of deliberative and reactive controllers will be suggested and its efficiency will be evaluated through the adaptation of control architecture to representative multi-robot system.

  • PDF

Dynamic Walking Control of Biped Walking Robot using Intelligent Control Method and Sensor Interface (지능형 제어기법 및 센서 인터페이스를 이용한 이족 보행 로봇의 동적보행 제어)

  • Kho, Jaw-Won;Lim, Dong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.4
    • /
    • pp.161-167
    • /
    • 2007
  • This paper introduces a dynamic walking control of biped walking robot using intelligent sensor interface and shows an intelligent control method for biped walking robot. For the dynamic walking control of biped walking robot, serious motion controllers are used. They are main controller(using INTEL80C296SA MPU), sub controller(using TMS320LF2406 DSP), sensor controller(using Atmega128 MPU) etc. The used sensors are gyro sensor, tilt sensor, infrared sensor, FSR sensor etc. For the feasibility of a dynamic walking control of biped walking robot, we use the biped walking robot which has twenty-five degrees of freedom(D.O.F.) in total. Our biped robot is composed of two legs of six D.O.F. each, two arms of five D.O.F. each, a waist of two D.O.F., a head of one D.O.F.

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

Design of An Intelligent Hybrid Controller for Autonomous Mobile Robot

  • Baek, Seung-Min;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.2-146
    • /
    • 2001
  • Recently, a need of non-industrial robot, such as service, medical, entertainment and house-keeping robot, has been increased. Therefore, the capability of robot which can do intelligent behavior like interaction with men and its environment become more prominent than the capability of executing simple repetitive task. To implement an intelligent robot which provides intelligent behavior, an effective system architecture including perception, learning, reasoning and action part is necessary. Control architectures for intelligent robot can be divided into two different classes. One is deliberative type controller which is applicate to high level intelligence like environment ...

  • PDF

Remote Navigation Control for Intelligent Robot Using PSO (PSO를 이용한 지능형 로봇의 원격 주행 제어)

  • Mun, Hyun-Su;Joo, Young-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

Internet-Based Remote Control of the Intelligent Robot (지능형 로봇의 인터넷 기반 원격 제어)

  • Yu, Young-Sun;Kim, Jong-Sun;Kim, Hyong-Suk;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • In this paper, we implement the internet-based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

Control of Mobile Robot Using Voice Recognition and Wearable Module (음성인식과 웨어러블 모듈을 이용한 이동로봇 제어)

  • 정성호;서재용;김용민;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.37-40
    • /
    • 2002
  • Intelligent Wearable Module is intelligent system that arises when a human is part of the feedback loop of a computational process like a certain control system. Applied system is mobile robot. This paper represents the mobile robot control system remote controlled by Intelligent Wearable Module. So far, owing to the development of internet technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment, We propose a control method activated by Intelligent Wearable Module. In a proposed system, PDA acts as a user interface to communicate with notebook as a controller of the mobile robot system using TCP/IP protocol, and the notebook controls the mobile robot system. Tlle information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the fuzzy inference engine.

  • PDF

Knowledge Distributed Robot Control Framework

  • Chong, Nak-Young;Hongu, Hiroshi;Ohba, Kohtaro;Hirai, Shigeoki;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1071-1076
    • /
    • 2003
  • In this work, we propose a new framework of robot control for a variety of applications to our unstructured everyday environments. Programming robots can be a very time-consuming process and seems almost impossible for ordinary end users. To cope with this, this work is to provide a software framework for building robot application programs automatically, where we have robots learn how to accomplish a commanded task from the object. An integrated sensing and computing tag is embedded into every single object in the environment. In the robot controller, only the basic software libraries for low-level robot motion control are provided from the robot manufacturer. The main contributions of this work is to develop a server platform that we call Omniscient Server that generates the application programs and send them to the robot controller through the network. The object-related information from the object server merges into robot control software to generate a detailed application program based on the task commands from the human. We have built a test bed and demonstrated that a robot can perform a common household task within the proposed framework.

  • PDF

A Design of the PUMA Robot Control System Using a PC (PC를 이용한 PUMA 로봇의 제어시스템 구성)

  • Kim, Dae-Won;Lee, Won-Sik;Kyung, Kye-Hyun;Lee, Sang-Moo;Ko, Myoung-Sam;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.980-985
    • /
    • 1988
  • In this paper, a control system of the PUMA 560 robot manipulator using a PC (Personal Computer) is presented. The hardware of the designed control system is composed of IBM-PC/AT, interface board, selection board, interrupt generating circuit, and the servo control unit of the PUMA controller. A robot control library is developed using assembly and C language, and is composed of several low-level functions and arm interface routines, world model routines, arm kinematics routines, and motion command service routines. Using the designed library, joint interpolated motion and Cartesian interpolated motion of the PUMA robot manipulator are realized. In the future, our system is expected to be a very helpful basis and a useful tool for developing various control algorithms of robot manipulator using sensory information.

  • PDF