• Title/Summary/Keyword: Intelligent Malware

Search Result 43, Processing Time 0.028 seconds

Naming Scheme for Standardization of Detection Rule on Security Monitoring Threat Event (보안관제 위협 이벤트 탐지규칙 표준 명명법 연구)

  • Park, Wonhyung;Kim, Yanghoon;Lim, YoungWhan;Ahn, Sungjin
    • Convergence Security Journal
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 2015
  • Recent, Cyber attacks such as hacking and malicious code techniques are evolving very rapidly changing cyber a ttacks are increasing, the number of malicious code techniques vary accordingly become intelligent. In the case of m alware because of the ambiguity in the number of malware have increased rapidly by name or classified as maliciou s code may have difficulty coping with. This paper investigated the naming convention of the vaccine manufacturer s in Korea to solve this problem, the analysis and offers a naming convention for security control event detection r ule analysis to compare the pattern of the detection rule out based on this current.

Preprocessor Implementation of Open IDS Snort for Smart Manufacturing Industry Network (스마트 제조 산업용 네트워크에 적합한 Snort IDS에서의 전처리기 구현)

  • Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1313-1322
    • /
    • 2016
  • Recently, many virus and hacking attacks on public organizations and financial institutions by internet are becoming increasingly intelligent and sophisticated. The Advanced Persistent Threat has been considered as an important cyber risk. This attack is basically accomplished by spreading malicious codes through complex networks. To detect and extract PE files in smart manufacturing industry networks, an efficient processing method which is performed before analysis procedure on malicious codes is proposed. We implement a preprocessor of open intrusion detection system Snort for fast extraction of PE files and install on a hardware sensor equipment. As a result of practical experiment, we verify that the network sensor can extract the PE files which are often suspected as a malware.

Design and Implementation of Anti-reversing Code Evasion Framework for Intelligent Malware Analysis (지능형 악성코드 분석을 위한 안티리버싱 코드 우회 프레임워크 설계 및 구현)

  • Lee, SunJun;Kim, KyuHo;Shin, YongGu;Yi, Jeong Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.218-221
    • /
    • 2018
  • 최근 악성코드의 수가 급격하게 증가하고 있으며 단순히 악성 행위를 하는 것 뿐 아니라 안티디버깅과 같은 다양한 분석 방지 기능을 탑재하여 악성코드의 분석을 어렵게 한다. 역공학 방지 기법이 적용된 지능형 악성코드를 기존 분석 도구를 사용하여 분석하면 악성행위를 하지 않거나 임의로 자기 자신을 종료시키는 방식으로 분석이 용이하지 않다. 이러한 지능형 악성코드들은 분석하기 어려울 뿐만아니라 기존 백신의 탐지 기능에 전혀 제약을 받지 않는다. 본 논문은 이와 같은 최신 지능형 악성코드에 보다 빠르게 대처하기 위해 역공학 방지 기법이 적용된 악성코드들이 메모리상에서 종료되지 않고 정상 동작하여 악성행위를 자동으로 파악할 수 있는 동적 코드 계측 프레임워크를 제안한다. 또한, 제안한 프레임워크를 개념 검증하기 위해 프로토타입을 설계 및 구현하고, 실험을 통해 그 유효성을 확인한다.

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

Context cognition technology through integrated cyber security context analysis (통합 사이버 보안 상황분석을 통한 관제 상황인지 기술)

  • Nam, Seung-Soo;Seo, Chang-Ho;Lee, Joo-Young;Kim, Jong-Hyun;Kim, Ik-Kyun
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.80-85
    • /
    • 2015
  • As the number of applications using the internet the rapidly increasing incidence of cyber attacks made on the internet has been increasing. In the equipment of L3 DDoS attack detection equipment in the world and incomplete detection of application layer based intelligent. Next-generation networks domestic product in high-performance wired and wireless network threat response techniques to meet the diverse requirements of the security solution is to close one performance is insufficient compared to the situation in terms of functionality foreign products, malicious code detection and signature generation research primarily related to has progressed malware detection and analysis of the research center operating in Window OS. In this paper, we describe the current status survey and analysis of the latest variety of new attack techniques and analytical skills with the latest cyber-attack analysis prejudice the security situation.

Context cognition technology through integrated cyber security context analysis (통합 사이버 보안 상황분석을 통한 관제 상황인지 기술)

  • Nam, Seung-Soo;Seo, Chang-Ho;Lee, Joo-Young;Kim, Jong-Hyun;Kim, Ik-Kyun
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.313-319
    • /
    • 2015
  • As the number of applications using the internet the rapidly increasing incidence of cyber attacks made on the internet has been increasing. In the equipment of L3 DDoS attack detection equipment in the world and incomplete detection of application layer based intelligent. Next-generation networks domestic product in high-performance wired and wireless network threat response techniques to meet the diverse requirements of the security solution is to close one performance is insufficient compared to the situation in terms of functionality foreign products, malicious code detection and signature generation research primarily related to has progressed malware detection and analysis of the research center operating in Window OS. In this paper, we describe the current status survey and analysis of the latest variety of new attack techniques and analytical skills with the latest cyber-attack analysis prejudice the security situation.

Design and Implementation of a Cloud-Based Recovery System against Ransomware Attacks (클라우드 기반 랜섬웨어 복구 시스템 설계 및 구현)

  • Ha, Sagnmin;Kim, Taehoon;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.521-530
    • /
    • 2017
  • In this paper, we propose a protection solution against intelligent Ransomware attacks by encrypting not only source files but also backup files of external storage. The system is designed to automatically back up to the cloud server at the time of file creation to perform monitoring and blocking in case a specific process affects the original file. When client creates or saves a file, both process identifiers, parent process identifiers, and executable file hash values are compared and protected by the whitelist. The file format that is changed by another process is monitored and blocked to prevent from suspicious behavior. By applying the system proposed in this paper, it is possible to protect against damage caused by the modification or deletion of files by Ransomware.

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.