• 제목/요약/키워드: Intelligent Malware

검색결과 43건 처리시간 0.022초

악성코드의 특성 이미지화를 통한 딥러닝 기반의 탐지 모델 (Detection Model based on Deeplearning through the Characteristics Image of Malware)

  • 황윤철;문형진
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.137-142
    • /
    • 2021
  • 인터넷의 발달로 많은 편리와 이익을 얻었지만 반대로 지능화되는 악성코드로 인하여 사용자의 경제적, 사회적 피해를 주고 있다. 이를 탐지하고 방어하기 위해 대부분 시그니처 기반의 탐지나 방어 프로그램을 사용하지만 지능화된 악성코드의 변종을 막기에는 매우 어렵다. 따라서 본 논문에서는 쏟아져 나오는 지능화된 악성코드를 탐지하고 방어할 수 있는 모델을 제안한다. 제안 모델은 악성코드의 특성을 이미지화하여 딥러닝을 이용한 학습을 통해 만들어지며 새롭게 탐지된 악성코드와 악성코드 변종들은 이미지화를 수행한 다음 만들어진 모델에 적용하여 탐지한다. 제안된 모델을 사용하면 기존에 탐지되었던 악성코드와 더불어 유사한 변종도 대부분 탐지됨을 알 수 있다.

Intelligent Android Malware Detection Using Radial Basis Function Networks and Permission Features

  • Abdulrahman, Ammar;Hashem, Khalid;Adnan, Gaze;Ali, Waleed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.286-293
    • /
    • 2021
  • Recently, the quick development rate of apps in the Android platform has led to an accelerated increment in creating malware applications by cyber attackers. Numerous Android malware detection tools have utilized conventional signature-based approaches to detect malware apps. However, these conventional strategies can't identify the latest apps on whether applications are malware or not. Many new malware apps are periodically discovered but not all malware Apps can be accurately detected. Hence, there is a need to propose intelligent approaches that are able to detect the newly developed Android malware applications. In this study, Radial Basis Function (RBF) networks are trained using known Android applications and then used to detect the latest and new Android malware applications. Initially, the optimal permission features of Android apps are selected using Information Gain Ratio (IGR). Appropriately, the features selected by IGR are utilized to train the RBF networks in order to detect effectively the new Android malware apps. The empirical results showed that RBF achieved the best detection accuracy (97.20%) among other common machine learning techniques. Furthermore, RBF accomplished the best detection results in most of the other measures.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

Fileless cyberattacks: Analysis and classification

  • Lee, GyungMin;Shim, ShinWoo;Cho, ByoungMo;Kim, TaeKyu;Kim, Kyounggon
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.332-343
    • /
    • 2021
  • With cyberattack techniques on the rise, there have been increasing developments in the detection techniques that defend against such attacks. However, cyber attackers are now developing fileless malware to bypass existing detection techniques. To combat this trend, security vendors are publishing analysis reports to help manage and better understand fileless malware. However, only fragmentary analysis reports for specific fileless cyberattacks exist, and there have been no comprehensive analyses on the variety of fileless cyberattacks that can be encountered. In this study, we analyze 10 selected cyberattacks that have occurred over the past five years in which fileless techniques were utilized. We also propose a methodology for classification based on the attack techniques and characteristics used in fileless cyberattacks. Finally, we describe how the response time can be improved during a fileless attack using our quick and effective classification technique.

분석 회피 기능을 갖는 안드로이드 악성코드 동적 분석 기능 향상 기법 (An Enhancement Scheme of Dynamic Analysis for Evasive Android Malware)

  • 안진웅;윤홍선;정수환
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.519-529
    • /
    • 2019
  • 지능화된 안드로이드 악성코드는 안티바이러스가 탐지하기 어렵도록 악성행위를 숨기기 위하여 다양한 분석 회피 기법을 적용하고 있다. 악성코드는 악성행위를 숨기기 위하여 백그라운드에서 동작하는 컴포넌트를 주로 활용하고, 자동화된 스크립트로 악성 앱을 실행할 수 없도록 activity-alias 기능으로 실행을 방해하고, 악성행위가 발견되는 것을 막기 위해 logcat의 로그를 삭제하는 등 지능화되어간다. 악성코드의 숨겨진 컴포넌트는 기존 정적 분석 도구로 추출하기 어려우며, 기존 동적 분석을 통한 연구는 컴포넌트를 일부만 실행하기 때문에 분석 결과를 충분히 제공하지 못한다는 문제점을 지닌다. 본 논문에서는 이러한 지능화된 악성코드의 동적 분석 성공률을 증가시키기 위한 시스템을 설계하고 구현하였다. 제안하는 분석 시스템은 악성코드에서 숨겨진 컴포넌트를 추출하고, 서비스와 같은 백그라운드 컴포넌트인 실행시키며, 앱의 모든 인텐트 이벤트를 브로드캐스트한다. 또한, 분석 시스템의 로그를 앱이 삭제할 수 없도록 logcat을 수정하고 이를 이용한 로깅 시스템을 구현하였다. 실험 결과 본 논문에서 제안한 시스템을 기존의 컨테이너 기반 동적 분석 플랫폼과 비교하였을 때, 악성코드 구동률이 70.9%에서 89.6%로 향상된 기능을 보였다.

HTTP Header 정보의 변조를 통한 악성코드 분석과 대응방안 (Malware Analysis and Policy Counterplan Against a Transformation of HTTP Header Information)

  • 임원규;허건일;박원형;국광호
    • 융합보안논문지
    • /
    • 제10권2호
    • /
    • pp.43-49
    • /
    • 2010
  • 최근 새로운 유형의 악성코드 발생이 꾸준히 증가하고 있으며 점점 지능화, 고도화되면서 그 형태 또한 다양한 형태로 변화하고 있다. 정보화산업의 발달로 정보의 경제적, 금전적 가치가 높아지면서 정보유출 악성코드로 인한 그 피해 또한 점점 더 증가하고 있다. 본 논문은 HTTP Header 정보 중 User-Agent의 일반적인 사용기법에 대해 알아본다. 또한, User-Agent 정보의 변조를 통한 다양한 악성코드 제작기법을 연구하고 이에 대한 기술적 정책적 대응방안을 제안한다.

Analysis of Deep Learning Methods for Classification and Detection of Malware

  • Moon, Phil-Joo
    • International Journal of Advanced Culture Technology
    • /
    • 제9권3호
    • /
    • pp.291-297
    • /
    • 2021
  • Recently, as the number of new and variant malicious codes has increased exponentially, malware warnings are being issued to PC and smartphone users. Malware is becoming more and more intelligent. Efforts to protect personal information are becoming more and more important as social issues are used to stimulate the interest of PC users and allow users to directly download malicious codes. In this way, it is difficult to prevent malicious code because malicious code infiltrates in various forms. As a countermeasure to solve these problems, many studies are being conducted to apply deep learning. In this paper, we investigate and analyze various deep learning methods to detect and classify malware.

지능형 악성코드 분석을 위한 리얼머신 기반의 바이너리 자동실행 환경 (Automatic Binary Execution Environment based on Real-machines for Intelligent Malware Analysis)

  • 조호묵;윤관식;최상용;김용민
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권3호
    • /
    • pp.139-144
    • /
    • 2016
  • 최근 악성코드를 이용한 위협은 사이버 상에서 가장 위협적이고 점차 지능화되고 있다. 하지만 안티 바이러스 제품이나 기존의 탐지 솔루션은 복잡해지고 정교해지는 악성코드에 대해 효과적으로 대응하지 못한다. 본 논문에서는 분석 환경 회피 기술을 갖는 악성코드를 보다 효과적으로 식별하기 위해 실제 컴퓨터 환경을 기반으로 악성코드의 동작 및 상태를 감지하고 악성코드의 요구사항을 동적으로 핸들링하는 환경을 제안한다. 제안하는 방법은 리얼머신 기반의 바이너리 자동실행 환경과 가상머신 환경에서의 악성코드 악성행위 활동성을 비교하여 지능형 악성코드를 효과적으로 분석하기 위한 동적 분석환경을 제공할 수 있음을 실험하여 보였다.

De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining

  • Su, Xin;Liu, Xuchong;Lin, Jiuchuang;He, Shiming;Fu, Zhangjie;Li, Wenjia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3230-3253
    • /
    • 2017
  • Android malware steals users' private information, and embedded unsafe advertisement (ad) libraries, which execute unsafe code causing damage to users. The majority of such traffic is HTTP and is mixed with other normal traffic, which makes the detection of malware and unsafe ad libraries a challenging problem. To address this problem, this work describes a novel HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad library. This work designed AndroCollector, which can automatically execute the Android application (app) and collect the network traffic traces. From these traces, this work extracts HTTP traffic features along three important dimensions: quantitative, timing, and semantic and use these features for characterizing malware and unsafe ad libraries. Based on these HTTP traffic features, this work describes a supervised classification scheme for detecting malware and unsafe ad libraries. In addition, to help network operators, this work describes a fine-grained categorization method by generating fingerprints from HTTP request methods for each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP traffic traces collected from 10778 Android apps. The experimental results show that the scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy when tested on the popular third-party Android markets.