• Title/Summary/Keyword: Intelligent Learning System

Search Result 1,127, Processing Time 0.022 seconds

Reactive Learning Inference System Considering Emotional Factor (감정적 요소를 고려한 반응학습 추론 시스템)

  • 심정연
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1107-1111
    • /
    • 2004
  • As an information technology is developed, more intelligent system considering emotional factor for implementing the personality is required. In this paper, Reactive Learning Inference System considering emotional factor is proposed. Emotional Facter(E) is defined for a criterion for representing the personal preference. This system is designed to have functions of Reactive filtering by Emotional factor, Incremental learning, perception & inference and knowledge retrieval. This system is applied to the area for analysis of customer's tastes and its performance is analyzed and compared.

Design of FLC using the Membership function modification algorithm and ANFIS (소속함수 수정 알고리즘과 ANFIS를 이용한 퍼지논리 제어기의 설계)

  • 최완규;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.43-46
    • /
    • 2001
  • We, in this paper, design the Sugeno-models fuzzy controller by using the membership function modification algorithm and ANFIS, which are clustering and learning the input-output data. The membership function modification algorithm constructs the more concrete fuzzy controller by clustering the input-output data from the fuzzy inference system. ANFIS construct the Sugeno-models fuzzy controller by learning the input-output data from the above controller. We showed that the fuzzy controller designed by our method could have the stable learning and the enhanced performance.

  • PDF

Functions of Chaos Neuron Models with a Feedback Slaving Principle

  • Inoue, Masayoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1009-1012
    • /
    • 1993
  • An association memory, solving an optimization problem, a Boltzmann machine scheme learning and a back propagation learning in our chaos neuron models are reviewed and some new results are presented. In each model its microscopicrule (a parameter of a chaos system in a neuron) is subject to its macroscopic state. This feedback and chaos dynamics are essential mechanisms of our model and their roles are briefly discussed.

  • PDF

An Input-correlated Neuron Model and Its Learning Characteristics

  • Yamakawa, Takeshi;Aonishi, Toru;Uchino, Eiji;Miki, Tsutomu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1013-1016
    • /
    • 1993
  • This paper describes a new type of neuron model, the inputs of which are interfered with one another. It has a high mapping ability with only single unit. The learning speed is considerably improved compared with the conventional linear type neural networks. The proposed neuron model was successfully applied to the prediction problem of chaotic time series signal.

  • PDF

Intelligent Transportation System using Q-Learning (Q-Learning을 ol용한 Intelligent Transportation System)

  • 박명수;김표재;최진영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1299-1302
    • /
    • 2003
  • In this paper, we propose new method which can provide user the path to the target place efficiently. It stores the state of roads to target place as the form of Q-table and finds the proper path using Q-table.0-table is updated by the information about real traffic which is reported by users. This method can provides the proper path, using less storage and less computation time than the conventional method which stores entire road traffic information and finds the path by graph search algorithm.

  • PDF

Neuro-Fuzzy System and Its Application by Input Space Partition Methods (입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용)

  • 곽근창;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

Intelligent Steering Control System Based on Voice Instructions

  • Seo, Ki-Yeol;Oh, Se-Woong;Suh, Sang-Hyun;Park, Gyei-Kark
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.539-546
    • /
    • 2007
  • The important field of research in ship operation is related to the high efficiency of transportation, the convenience of maneuvering ships and the safety of navigation. For these purposes, many intelligent technologies for ship automation have been required and studied. In this paper, we propose an intelligent voice instruction-based learning (VIBL) method and discuss the building of a ship's steering control system based on this method. The VIBL system concretely consists of two functions: a text conversion function where an instructor's inputted voice is recognized and converted to text, and a linguistic instruction based learning function where the text instruction is understood through a searching process of given meaning elements. As a study method, the fuzzy theory is adopted to build maneuvering models of steersmen and then the existing LIBL is improved and combined with the voice recognition technology to propose the VIBL. The ship steering control system combined with VIBL is tested in a ship maneuvering simulator and its validity is shown.

2nd-order PD-type Learning Control Algorithm

  • Kim, Yong-Tae;Zeungnam Bien
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.247-252
    • /
    • 2004
  • In this paper are proposed 2nd-order PD-type iterative learning control algorithms for linear continuous-time system and linear discrete-time system. In contrast to conventional methods, the proposed learning algorithms are constructed based on both time-domain performance and iteration-domain performance. The convergence of the proposed learning algorithms is proved. Also, it is shown that the proposed method has robustness in the presence of external disturbances and the convergence accuracy can be improved. A numerical example is provided to show the effectiveness of the proposed algorithms.

Intelligent Control of Robot Manipulators by Learning (학습을 이용한 로봇 머니퓰레이터용 지능제어)

  • Lee DongHun;Kuc TaeYong;Chung ChaeWook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • An intelligent control method is proposed for control of rigid robot manipulators which achieves exponential tracking of repetitive robot trajectory under uncertain operating conditions such as parameter uncertainty and unknown deterministic disturbance. In the learning controller, exponentially stable learning algorithms are combined with stabilizing computed error feedforward and feedback inputs. It is shown that all the error signals in the learning system are bounded and the repetitive robot motion converges to the desired one exponentially fast with guaranteed convergence rate. An engineering workstation based control system is built to verify the effectiveness of the proposed control scheme.

A Study on Learner Modeling Technology and Applications for Intelligent Tutoring Systems (지능형 교육 시스템을 위한 학습자 모델 기술과 응용 연구)

  • Yoon, Taebok;Lee, Jee-Hyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6455-6460
    • /
    • 2013
  • Learner modeling forms the foundations for intelligent tutoring systems that provide adaptive and active learning guidance for learning and education quality enhancement. The aim of this study was to develop learner modeling technologies to form the foundation of intelligent tutoring systems. Specific research tasks include learner modeling building techniques, diverse learner state diagnosis methods and educational data mining.