• Title/Summary/Keyword: Intelligent Information

Search Result 7,686, Processing Time 0.031 seconds

Networked Robots in the Informative Spaces

  • Kim, Bong-Keun;Ohara, Kenichi;Ohba, Kohtaro;Tanikawa, Tamio;Hirai, Shigeoki;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.714-719
    • /
    • 2005
  • In this paper, the informative space is proposed to implant ubiquitous functions into physical spaces. We merge physical and virtual spaces through the space structurization using an RFID system, and solve the space localization and mapping problem for a robot to navigate through the distribution and synthesis of information and knowledge. To distribute knowledge flexibly and reliably to changing environment and also to develop a system which allows a robot to invoke and merge the distributed knowledge more freely, we employ a novel approach of knowledge management based on Web services. The proposed method is verified by building a physical space with two kinds of RFID tags and a virtual space with knowledge database based on Web services.

  • PDF

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

A Study on Designing Intelligent Military Decision Aiding System in a Network Computing Environment (네트웍 컴퓨팅 환경하에서의 지능형 군사적 의사결정시스템 구축에 관한 연구)

  • 김용효;박상찬
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.1
    • /
    • pp.18-40
    • /
    • 1998
  • This paper is aimed to design an intelligent military decision aiding system in a network computing environment, especially focusing on designing an intelligent analytic system that has data mining tools and inference engine. Through this study, we concluded that the intelligent analytic system can aid military decision making processes. Highlights of the proposed system are as follows : 1) Decision making time can be reduced by the On-line and Real-time analysis ; 2) Intelligent analysis on military decision problems in network computing environments in enabled; 3) The WWW-based implementation models, which provide a standard user interface with seamless information sharing and integration capability and knowledge repository.

  • PDF

Operation Plan for the Management of an Information Security System to Block the Attack Routes of Advanced Persistent Threats (지능형지속위협 공격경로차단 위한 정보보호시스템 운영관리 방안)

  • Ryu, Chang-Su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.759-761
    • /
    • 2016
  • Recent changes in the information security environment have led to persistent attacks on intelligent assets such as cyber security breaches, leakage of confidential information, and global security threats. Since existing information security systems are not adequate for Advanced Persistent Threat; APT attacks, bypassing attacks, and attacks on encryption packets, therefore, continuous monitoring is required to detect and protect against such attacks. Accordingly, this paper suggests an operation plan for managing an information security system to block the attack routes of advanced persistent threats. This is achieved with identifying the valuable assets for prevention control by establishing information control policies through analyzing the vulnerability and risks to remove potential hazard, as well as constructing detection control through controlling access to servers and conducting surveillance on encrypted communication, and enabling intelligent violation of response by having corrective control through packet tagging, platform security, system backups, and recovery.

  • PDF

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.33-40
    • /
    • 2021
  • Due to advanced complex strategies, the complexity of information that a commander must analyze is increasing. An intelligent service that can analyze battlefield is needed for the commander's timely judgment. This service consists of extracting knowledge from battlefield information, building a knowledge base, and analyzing the battlefield information from the knowledge base. This paper extract information similar to an input query by embedding the knowledge base built in the 2nd step. The transformation model is needed to generate the embedded knowledge base and uses the random-walk algorithm. The transformed information is embedding using Word2Vec, and Similar information is extracted through cosine similarity. In this paper, 980 sentences are generated from the open knowledge base and embedded as a 100-dimensional vector and it was confirmed that similar entities were extracted through cosine similarity.

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

Visual Attention Model Based on Particle Filter

  • Liu, Long;Wei, Wei;Li, Xianli;Pan, Yafeng;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3791-3805
    • /
    • 2016
  • The visual attention mechanism includes 2 attention models, the bottom-up (B-U) and the top-down (T-D), the physiology of which have not yet been accurately described. In this paper, the visual attention mechanism is regarded as a Bayesian fusion process, and a visual attention model based on particle filter is proposed. Under certain particular assumed conditions, a calculation formula of Bayesian posterior probability is deduced. The visual attention fusion process based on the particle filter is realized through importance sampling, particle weight updating, and resampling, and visual attention is finally determined by the particle distribution state. The test results of multigroup images show that the calculation result of this model has better subjective and objective effects than that of other models.

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.

A Design of Weather Ontology for Intelligent Weather Service (지능형 기상 서비스를 위한 기상 온톨로지의 설계)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.185-193
    • /
    • 2008
  • In spite of rapid development of IT-related meteorology and services, human users still ought to check the weather information manually as they did before because traditional weather information retrieval is based on pull-type and human interpretation. Furthermore, the automatic machine-driven weather information processing has been neglected for a long time although the intelligent weather information processing is expected to be very useful for personal daily life and ubiquitous computing. In this paper, we discussed a design of GRIB based ontology to enable smart weather information processing. GRIB is the general purposed and world-wildly used weather data format approved by the World Meteorological Organization. With the designed ontology and the inference system containing Jess engine, several intelligent weather applications have been implemented and tested to verify the virtue of machine-driven weather information processing.

  • PDF

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.