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Abstract 

 
The visual attention mechanism includes 2 attention models, the bottom-up (B-U) and the 
top-down (T-D), the physiology of which have not yet been accurately described. In this 
paper, the visual attention mechanism is regarded as a Bayesian fusion process, and a visual 
attention model based on particle filter is proposed. Under certain particular assumed 
conditions, a calculation formula of Bayesian posterior probability is deduced. The visual 
attention fusion process based on the particle filter is realized through importance sampling, 
particle weight updating, and resampling, and visual attention is finally determined by the 
particle distribution state. The test results of multigroup images show that the calculation 
result of this model has better subjective and objective effects than that of other models. 
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1. Introduction 

Visual attention research centers on computer stimulations of the primary response of the 
human visual system to the outside world. The main research task is to construct a rational 
mathematical model to calculate sensory effects similar to those of human vision. The 
research result is of crucial importance to target detection, tracking, and related technological 
development. 

Itti and Koch [1–3] established for the first time a bottom-up (B-U) visual attention model 
focused on light intensity, color, and orientation features. By extracting those primary visual 
features, 3 visual channels were calculated both in parallel and independently. Ultimately, 
the result of visual attention was obtained through fusion calculation. Studies of the human 
visual mechanism show that attention is formed by the interaction of B-U and top-down (T-
D) attention. This mechanism is called bidirectional attention. Itti and Koch’s model did not 
include the influence of the human subjective thinking process, i.e., the influence of T-D 
visual information on attention, and thus failed to reflect the overall actual effects of human 
visual attention. Research concerning biological vision still does not accurately describe the 
formation mechanism of attention. For this reason, the construction of a bidirectional 
attention model [4, 5] remain a challenging problem for studies in this field. Bidirectional 
visual models are mainly divided into weighting fusion models (WFMs) [6, 7], bias control 
models (BCMs) [8–11], and pattern classification models (PCMs) [12–14]. 

The WFM obtains a final attention saliency map mainly through the fusion of B-U and T-
D attention by linear weighting. Zhang Qin et al. [6] obtained a facial attention map by 
weighting fusion of the attention to human facial color and attention to target features such 
as color, intensity, and orientation. Fang et al. [7] took the directional features of the target as 
T-D attention, which was fused with Itti’s attention model through proportional weighting. 
Note that that the fusion weighting coefficient of the WFM is set by experience and will lead 
to instability of attention results because it cannot adapt to visual image changes. 

The BCM adjusts the 3 feature-fusion weighting coefficients of Itti’s model by the bias 
value of T-D attention. Zhang Jing et al. [8] took similar distances as a T-D factor to regulate 
the corresponding B-U-featured weight coefficient to obtain an attention salience map. 
Alcides et al. [9] carried out self-organized neural network learning for particular static 
target features to generate the weight, thus regulating the calculation process of B-U 
attention to produce its attention salience map. Yu et al. [10, 11] established long-term-
memory units of target features and calculated the distribution bias of the position 
probability by comparison with low-level features. For the BCM, false results are frequent 
owing to the difficulty in determining the control parameter. 

The PCM realizes the learning process by taking T-D and B-U attention produced by the 
sample and human visual 

 attention as the input and output of the classifier respectively, and uses the decided 
classifier as the model to produce attention. The gaze-prediction model by Robert et al. [12] 
established the relations between areas with high attention salience and the related positions 
of the task. Judd et al. [13] held that such a relation is a nonlinear mapping one that can be 
resolved by training the classifier. Ali Borji [14] adopted AdaBoost to train several weak 
classifiers in his research on the nonlinear mapping relation between features and the visual 
attention salience map. The PCM model needs many samples to train the classifier, so it is 
largely influenced by sample features. 
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The above studies show that the fusion weighting coefficient of the WFM is set by 
experience, cannot adapt to visual image change, and will lead to instability of attention 
results. For the BCM model, false results are frequent owing to the difficulty in determining 
the control parameter. The PCM model needs many samples to train the classifier, and thus 
is largely influenced by sample features. 

To reduce these inadequacies, this paper proposes a bidirectional visual fusion attention 
model based on particle filter. This model does not need to set a parameter or train a sample, 
is determined by the sparse distribution of particles, and will generate an attention saliency 
map in the end. 

2. Bidirectional attention model 
A bidirectional attention model based on particle filter was constructed. With B-U and T-D 
attention taken as its input value, this model controlled the importance sampling of particles 
through B-U attention, calculated and updated the particle weight, and then changed the 
distribution state of particles by resampling. The framework is shown in Fig. 1. 
 

 

Fig. 1. Bidirectional (T-D and B-U) attention model based on particle filter 

 
In Fig. 1, the most important step is the calculation of posterior probability for a weight 
update. There were 2 assumptions: (i) the time dynamic process conformed to the Markov 
one and (ii) observed values at different times were independent of each other and related 
only to the current state. 

According to the particle filter theory, let the particle state be  and the observed 

value . The density function of posterior probability at the k moment is approximately 

                                     (1) 

where ， ( )π ⋅ is a probability density function, ( )q ⋅ is an importance density 
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assumed to be . The observed value of B-U attention is  and T-D attention . In 
this paper, B-U and T-D attention are regarded as the input of Bayesian fusion estimation, so 
the posterior probability  can be represented as . 

For particle weight updating calculation, the recurrence relation between  

and ( )0: 1: 1 1: 1,B U T D
t t tp x z Z− −

− − . Then the posterior probability value of the bidirectional fusion 
attention can be solved and deduced as follows:  
 

  

                                              (2) 

 

                                                      (3) 
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i. From deducing steps in Equations (2) and (3), 

= ; 

ii. similarly, from Equations (6) and (7), =

; 

iii. the denominator of Equation (6), density  and 

 are independent of  and can be regarded as the constant ; 

iv. and in accordance with assumption (ii), Equation (8) can be simplified as 
= . 

According to the importance sampling theorem, the direct ratio of particle weight  is 

, and can be represented as follows: 

 

             (10) 

            

(11) 

According to Equation (11),  represents the conditional probability of B-U 

attention observation in the current particle attention state, but  is that of 
T-D attention observation in B-U observation and the current particle attention state. Two 
values, and , directly determine the weight value of the 
updated particles. 
 

3. Calculation of attention saliency map 
In this model, the salience of B-U visual attention is written as and that of T-D 
attention as . According to the bidirectional fusion attention model based on particle 
filter in Section 2, and  are regarded as input values of the model to estimate 
the salience; the process of estimation is as follows: first, the importance sampling based on 
the value of is completed; then the weight of the particle filter is calculated by 
Equation (11); finally, the ultimate attention salience map is determined by the particle 
distribution density. The overall algorithm framework is shown in Fig. 2. 
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Fig. 2. Algorithm framework of saliency detection 

 

3.1 Particle weight updating 

According to Equation (11), the weight of the current state  is in direct proportion to the 

product of the weight of the previous time , . 

 is the probability value of B-U attention in the current state, and 

 is the posterior probability value of T-D attention under B-U attention 
observational conditions. Those values are defined respectively as follows: 
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3.2 Importance sampling and resampling 
The B-U attention salience was used to regulate the density of Gaussian particle random 
sampling. Let , , and in an independent identical 
distribution, and make  

                  (14) 

where , , , and  are the mean and variance of pseudorandom sequence and
 respectively. Through Equation (14), results of random Gaussian sampling can be 

produced in the area formed by the coordinate center .  was assumed to 
be the saliency value of the saliency map on coordinate  at time . The sampling 
density function was defined as follows: 

                   (15) 

where and represent the abscissa and ordinate in the saliency map respectively; the mean 

was , and the variance was . The result of particle 

sampling is shown in Fig. 3. 

 

(a)                                              (b) (c) 

Fig. 3. Graphical overview of particle sampling.  
(a) Original map. (b) B-U attention saliency map. (c) sampling results map. 
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3.3 Attention saliency map 
After resampling, the attention size was determined by the density of the particle distribution. 
The attention salience of the dense-particle-distribution area was remarkably higher and that 
of sparse distribution areas was remarkably lower, as shown in Fig. 4. 

 

Fig. 4. Graphical overview of particle distribution and attention size 

According to the distribution state of particles, in 2-dimensional space the size of the 
attention saliency can be defined as follows: 

                                 (16) 

where is the spatial position of particle distribution, is the number of particles, and 
is the window width. The 2-dimensional Gaussian windows were adopted as 

the window function. Then Equation (16) was turned into (17): 

                           (17) 

Fig. 5 shows the process of attention saliency estimation based on the particle filter.  

 

Fig. 5. Process of attention saliency estimation 
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4. Experimental results and discussions 
In this section, the effect of the bidirectional visual attention model based on particle filter is 
tested and analyzed. In addition, visual attention saliency maps of our model and those of 
others (Itti’s model[1], Fang’s weighting fusion model[7], Zhang’s bias control model[8], 
and Judd’s pattern classification model[13–19]) are compared and analyzed. The saliency 
estimation accuracy is also evaluated. The experiment was completed on a Dell computer of 
2.0 GHz and 1 GB RAM, and the programming environment was MATLAB 2012. 

4.1. Environmental result analysis 
Fig. 6 shows the experimental results. The testing image data were named “cola,” “horse,” 
“cup,” “paper bag,” “fire hydrant,” “balloon,” “oil drum,” and “desk accessories.” The first 
row in Fig. 6 shows the original map; the second, the marked salience result (ground truth) 
of the map for comparing and calculating purposes; the third, the salience map of Itti’s 
model; the forth, the result of Fang’s WFM; the fifth, that of Zhang’s BCM; the sixth, that of 
Judd’s PCM; and the last, that of our model. 
 

 

1 

 

2 

3 

4 

5 

6 

7 

Fig. 6. Comparative experimental results 
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It can be seen from the experimental results that the attention saliency map of Itti’s model 

(Fig. 6, row 3) was a simple presentation of areas with strong contrasts of visual stimulation. 
For the “cup,” “paper bag,” and “office supplies,” the target area of attention was not clear 
due to the interference of light and background; In Fang’s model (row 4), the fusion of the 
bidirectional attention was realized by linear weighting; the selection of the weighting 
coefficient had a large effect on the result, but obtaining an optimum result was difficult; for 
different images, the fixed weight coefficient had difficulty getting a consistent, substantial 
effect. For “cup,” “paper bag,” and “desk accessories,” note that the clearing effect was not 
ideal. For “fire prevention,” “balloon,” and “oil drum” attention resulted in an only 
preliminary effect. “Cola” and “horse” results had the target attention region relatively close. 
Based on the feature similarity, Zhang’s model (row 5) bias influenced the process of B-U 
feature fusion in a T-D manner, and thus it had a better effect than other methods. The 
method of Judd’s model (row 6) is greatly influenced by the training samples, so it was far 
from accurate. In Fig. 6, it can be seen that compared to other methods the subjective effect 
of the estimation of the bidirectional fusion attention model proposed in this paper (row 7) 
was better; the saliency of task-related areas was significantly improved, the saliency of 
background areas was inhibited correspondingly, and thus a sharper saliency contrast was 
formed. 

 

4.2 ROC performance index 
A receiver operating characteristic (ROC) curve was applied in this paper to evaluate the 
estimation performance of attention saliency. Each pixel was set as a sample of the binary 
classifier. If the pixel value was greater than a certain threshold value, it would be the 
attention focus (positive sample); otherwise it would be a nonattention focus (negative 
sample). The true binary map of the image was the standard (ground truth); a series of 
corresponding values of the true positive rate (TPR) and false positive rate (FPR) were 
obtained by changing the threshold value. Then the ROC curve was drawn with the FPR and 
TPR as the lateral and longitudinal axes respectively. The TPR and FPR were calculated by 
Equations (18) and (19):  
 

                                                                            (18) 
 

                                                                   (19) 
 

where and represent the number of positive and negative samples respectively and 
and are the number of positive samples judged true and false. Fig.7 shows the ROC 

curves of the testing data. The closer the curve is to the top left corner, i.e., the TPR value is 
large and the FPR is small, the better the performance of the algorithm.  

The green curve in Fig. 7 is the result of Itti’s model, which belongs to the B-U pattern. Its 
algorithm performance is better than those of others when the visual feature has a high 
contrast. Otherwise, its ROC effect is poor. The blue curve is the result of Fang’s WFM, in 
which attention results of various images show large differences owing to the fixed fusion 
coefficient. The cyan curve is that of Zhang’s bias control pattern, which produces good 
attention results and relatively stable quality by adopting the T-D bias pattern. The black 
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curve is that of Judd’s PCM, in which statistical samples have an obvious influence on the 
attention result. The red curve shows the result from the proposed model. Clearly, with the 
most stable effect of the ROC curve among the test results, the proposed model is better. 

 

   

(a)                                   (b)                                         (c)  

   

  (d)                                 (e)                                             (f)      

  

   (g)                                            (h) 
 

Fig. 7. ROC curve comparison. The closer the curve is to the top left corner, the better the 
performance of the algorithm. (a) “cola.” (b) “horse.” (c) “cup.” 

 (d) “paper bag.” (f) “balloon.” (g) “oil drum.” (h) “desk accessories.” 

5. Conclusion 
On the basis of the Bayesian fusion theory, a bidirectional fusion attention model based on a 
particle filter is put forward, with Itti’s visual attention taken as B-U attention and task 
orientation attention taken as T-D attention. The attention salience is computed through the 
effective fusion of bidirectional attention within the particle filter’s framework and the 
particle distribution after filtering. The experimental results show that the model proposed in 
this paper, by which a relatively accurate attention salience map may be obtained, is of 
significant academic and practical value in related fields. 
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