• Title/Summary/Keyword: Intelligent Digital Redesign (IDR)

Search Result 19, Processing Time 0.026 seconds

Intelligent Digital Redesign Via Complete State-Matching (완벽한 상태정합을 이용한 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.276-278
    • /
    • 2006
  • In this paper, a complete solution to fuzzy-model-based digital redesign problem (IDR) for sampled-data nonlinear systems is presented, The term of intelligent digital redesign (IDR) is to design a digital fuzzy controller such that the sampled-data closed-loop fuzzy system is equivalent to the continuous-time closed-loop fuzzy system using the state matching, Its solution is simply obtained by linear transformation, Under the proposed sampled-data controller, the states of the sampled-data and continuous-time fuzzy system are completely matched at every sampling points.

  • PDF

LMI-Based Intelligent Digital Redesign for Multirate Sampled-Data Fuzzy Systems

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

Intelligent Digital Redesign Based on Periodic Control

  • Kim Do Wan;Joo Young Hoon;Park Jin Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.378-381
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 2) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 3) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

Improved Digital Redesign for Fuzzy Systems: Compensated Bilinear Transform Approach

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.765-770
    • /
    • 2005
  • This paper presents a new intelligent digital redesign (IDR) method via the compensated bilinear transformation to design the digital controller such that the digital fuzzy system is equivalent to the analog fuzzy system in the sense of the state-matching. This paper especially consider a multirate control scheme with a predictive feature, where the digital control input is held constant N times between the sampling points. More precisely, the multirate control scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state from the state measured at the sampling points, the delayed measurements. For this system, the IDR conditions incorporated with stabilizability in the format of the linear matrix inequalities (LMIs) are derived. The superiority of the proposed technique is convincingly visualized through a numerical example.

New Sufficient Conditions to Intelligent Digital Redesign for the Improvement of State-Matching Performance (상태-정합 성능 향상을 위한 지능형 디지털 재설계에 관한 새로운 충분조건들)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.293-296
    • /
    • 2006
  • This paper presents new sufficient conditions to an intelligent digital redesign (IDR). The purpose of the IDR is to effectively convert an existing continuous-time fuzzy controller to an equivalent sampled-data fuzzy controller in the sense of the state-matching. The state-matching error between the closed-loop trajectories is carefully analyzed using the integral quadratic functional approach. The problem of designing the sampled-data fuzzy controller to minimize the state-matching error as well as to guarantee the stability is formulated and solved as the convex optimization problem with linear matrix inequality (LMI) constraints.

  • PDF

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Periodic Sampled-Data Control for Fuzzy Systems;Intelligent Digital Redesign Approach

  • Kim, D.W.;Joo, Y.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1492-1495
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed; and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system; but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

Intelligent Digital Redesign of Biodynamic Model of HIV-1 (HIV-1 바이오 동역학 모델의 지능형 디지털 재설계)

  • Kim Do-Wan;Joo Young-Hoon;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.547-553
    • /
    • 2006
  • This paper studies digital control of biodynamic model of HIV-1 via intelligent digital redesign (IDR). The purpose of the IDR is to develop an equivalent digital fuzzy controller maintaining the satisfactory performance of an existing continuous-time fuzzy controller in the sense of the state-matching. Some conditions for the stability as well as the global state-matching are provided.. They are given by the form of the linear matrix inequalities (LMIs) and thereby easily tractable by the convex optimization techniques. The main features of the proposed method are that 1) the generalized control scheme is provided for the multirate as well as the single-rate digital controllers; 2) a new compensated block-pulse function method is applied to closely match the states of the continuous-time and the sampled-data fuzzy systems in the discrete-time domain; 3) the two-step procedure of IDR is presented to prevent the performance degradation caused by the additional stability conditions. The applicability of the proposed approach is shown through the biodynamic model of HIV-1.

Intelligent Digital Redesign:Unmeasurable Premise Variable Case (지능형 디지털 재설계: 전건부 변수가 측정 불가능한 경우)

  • Ho Jae, Lee;Jin Bae Park;Yeon Woo Lee;Young Hoon Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.502-505
    • /
    • 2004
  • An intelligent digital redesign technique (IDR) for the observer-based output feedback Takagi-Sugeno (T-S) fuzzy control system with unmeasurable premise variables is developed. The considered IDR condition is cubically parameterized as convex minimization problems of the norm distances between linear operators to be matched.

  • PDF

Intelligent Digital Redesign: A Fuzzy Output Case (지능형 디지털 재설계: 출력이 퍼지인 경우)

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Yeun-Woo;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.126-129
    • /
    • 2002
  • An intelligent digital redesign technique (IDR) for the observer-based output feedback Takagi-Sugeno (T-5) fuzzy control system with fuzzy outputs is developed. The considered IDR condition is cubically parameterized as convex minimization problems of the norm distances between linear operators to be matched.'rho stability condition is easily embedded and the separations principle is explicitly shown.