• Title/Summary/Keyword: Intelligent Controller

Search Result 1,443, Processing Time 0.058 seconds

ON THE CONTROL OF SELECTED MACHINING PROCESSES BY MEANS OF A NEURAL FUZZY CONTROLLER

  • Balazinski, M.;Czogala, E.;Sadowski, T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1129-1132
    • /
    • 1993
  • This paper presents the idea of a neural fuzzy controller with application to the control of an industrial machining process. The structure of such a controller, which links the idea of a fuzzy controller and a neural network, is suggested. Results of comparative simulations indicate that the proposed neural fuzzy controller performs equally well as a fuzzy logic controller; moreover, it is more flexible and allows faster data processing.

  • PDF

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

2-Layer Fuzzy Controller for Behavior Control of Mobile Robot (이동로봇의 행동제어를 위한 2-Layer Fuzzy Controller)

  • Sim, Kwee-Bo;Byun, Kwang-Sub;Park, Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.287-292
    • /
    • 2003
  • The ability of robot is being various and complex. The robot is utilizing distance, image data and voice data for sensing its circumstance. This paper suggests the 2-layer fuzzy control as the algorithm that control robot with various sensor information. In a obstacle avoidance, it utilizes many range finders and classifies them into 3parts(front, left, right). In 3 sub-controllers, the controller executes fuzzy conference. And then it executes combined control with a combination of outputs of 3 sub-controllers in the second step. The text compares the 2-layer fuzzy controller with the hierarchical fuzzy controller that has analogous structure. And the performance of the 2-layer fuzzy controller is confirmed by application this controller to robot following, simulation to each other and real experiment.

The Intelligent Controller for Biped Robot Using Neural Network (이족로봇용 신경망 지능 제어기)

  • 김성주;김용택;고재양;서재용;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2573-2576
    • /
    • 2003
  • This paper proposes the controller for biped robot using intelligent control algorithm. The main purpose of this paper is to design the robot controller using Hierarchical Mixture of Experts(HME). The neural network direct control method will be applied to the control scheme for the biped robot and neural network will learn the dynamics of biped robot. The teaming scheme using a intelligent controller to biped robot is developed. The teaming scheme uses a HME controller combined with a inverse biped robot model. The controller provides the control signals at each control time instant. Simulation results are reported for a seven-link biped robot.

  • PDF

Intelligent Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on H$\_$$\infty$/ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response.

  • PDF

Power System Oscillations Damping Using UPFC Based on an Improved PSO and Genetic Algorithm

  • Babaei, Ebrahim;Bolhasan, Amin Mokari;Sadeghi, Meisam;Khani, Saeid
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, optimal selection of the unified power flow controller (UPFC) damping controller parameters in order to improve the power system dynamic response and its stability based on two modified intelligent algorithms have been proposed. These algorithms are based on a modified intelligent particle swarm optimization (PSO) and continuous genetic algorithm (GA). After extraction of UPFC dynamic model, intelligent PSO and genetic algorithms are used to select the effective feedback signal of the damping controller; then, to compare the performance of the proposed UPFC controller in damping the critical modes of a single-machine infinite-bus (SMIB) power system, the simulation results are presented. The comparison shows the good performance of both presented PSO and genetic algorithms in an optimal selection of UPFC damping controller parameters and damping oscillations.

A Study on the Position Control of DC servo Motor Usign a Fuzzy Neural Network (퍼지신경망을 이용한 직류서보 모터의 위치 제어에 관한 연구)

  • 설재훈;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.51-59
    • /
    • 1997
  • In this paper, we perform the position control of a DC servo motor using fuzzy neural controller. We use the Fuzzy controller for the position control, because the Fuzzy controller is designed simpler than other intelligent controller, but it is difficult to design for the triangle membership function format. Therefore we solve the problem using the BP learning method of neural network. The proposed Fuzzy neural network controller has been applied to the position control of various virtual plants. And the DC servo motor position control using the fuzzy neural network controller is performed as a real time experiment.

  • PDF

A Future Remote Controller for 3D TV

  • Park, Min-Chul;Cheoi, Kyung-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1737-1738
    • /
    • 2007
  • An intelligent remote controller for 3-D TV interface exploits an artificial system of human visual attention for an easy interaction.

  • PDF

A Study of the Development of an Intelligent PID Cjontroller(II) (지능형 PID 제어기 개발에 관한 연구 II)

  • 유연운;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.847-852
    • /
    • 1993
  • In this paper, we present a recursive algorithm for the auto-tuning of PID controllers by optimizing a GPC criterion. Also, we develop an intelligent PID controller by combination of a recursive algorithm together with a supervisor, that allows to adjust the main controller parameters (prediction horizon, control weighting, sample time etc.) using some simple rules which is mainly built up through relay tuning experiments. The intelligent PID controller has been implemented successfully on an IBM PC/AT and some simulation results are presented.

  • PDF

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF