• Title/Summary/Keyword: Intelligent Battlefield

Search Result 33, Processing Time 0.026 seconds

A Study on Construction Method of AI based Situation Analysis Dataset for Battlefield Awareness

  • Yukyung Shin;Soyeon Jin;Jongchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.37-53
    • /
    • 2023
  • The AI based intelligent command and control system can automatically analyzes the properties of intricate battlefield information and tactical data. In addition, commanders can receive situation analysis results and battlefield awareness through the system to support decision-making. It is necessary to build a battlefield situation analysis dataset similar to the actual battlefield situation for learning AI in order to provide decision-making support to commanders. In this paper, we explain the next step of the dataset construction method of the existing previous research, 'A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence'. We proposed a method to build the dataset required for the final battlefield situation analysis results to support the commander's decision-making and recognize the future battlefield. We developed 'Dataset Generator SW', a software tool to build a learning dataset for battlefield situation analysis, and used the SW tool to perform data labeling. The constructed dataset was input into the Siamese Network model. Then, the output results were inferred to verify the dataset construction method using a post-processing ranking algorithm.

A Virtual Battlefield Situation Dataset Generation for Battlefield Analysis based on Artificial Intelligence

  • Cho, Eunji;Jin, Soyeon;Shin, Yukyung;Lee, Woosin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.33-42
    • /
    • 2022
  • In the existing intelligent command control system study, the analysis results of the commander's battlefield situation questions are provided from knowledge-based situation data. Analysis reporters write these results in various expressions of natural language. However, it is important to analyze situations about information and intelligence according to context. Analyzing the battlefield situation using artificial intelligence is necessary. We propose a virtual dataset generation method based on battlefield simulation scenarios in order to provide a dataset necessary for the battlefield situation analysis based on artificial intelligence. Dataset is generated after identifying battlefield knowledge elements in scenarios. When a candidate hypothesis is created, a unit hypothesis is automatically created. By combining unit hypotheses, similar identification hypothesis combinations are generated. An aggregation hypothesis is generated by grouping candidate hypotheses. Dataset generator SW implementation demonstrates that the proposed method can be generated the virtual battlefield situation dataset.

Recommendation Model for Battlefield Analysis based on Siamese Network

  • Geewon, Suh;Yukyung, Shin;Soyeon, Jin;Woosin, Lee;Jongchul, Ahn;Changho, Suh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we propose a training method of a recommendation learning model that analyzes the battlefield situation and recommends a suitable hypothesis for the current situation. The proposed learning model uses the preference determined by comparing the two hypotheses as a label data to learn which hypothesis best analyzes the current battlefield situation. Our model is based on Siamese neural network architecture which uses the same weights on two different input vectors. The model takes two hypotheses as an input, and learns the priority between two hypotheses while sharing the same weights in the twin network. In addition, a score is given to each hypothesis through the proposed post-processing ranking algorithm, and hypotheses with a high score can be recommended to the commander in charge.

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.33-40
    • /
    • 2021
  • Due to advanced complex strategies, the complexity of information that a commander must analyze is increasing. An intelligent service that can analyze battlefield is needed for the commander's timely judgment. This service consists of extracting knowledge from battlefield information, building a knowledge base, and analyzing the battlefield information from the knowledge base. This paper extract information similar to an input query by embedding the knowledge base built in the 2nd step. The transformation model is needed to generate the embedded knowledge base and uses the random-walk algorithm. The transformed information is embedding using Word2Vec, and Similar information is extracted through cosine similarity. In this paper, 980 sentences are generated from the open knowledge base and embedded as a 100-dimensional vector and it was confirmed that similar entities were extracted through cosine similarity.

Research on Intelligent Combat Robot System as a Game-Changer in Future Warfare

  • Byung-Hyo Park;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2023
  • The Army has presented eight game-changers for future warfare through 'Army Vision 2050,' including Intelligent Combat Robots, Super Soldiers, Energy Weapons, Hypersonic Weapons, Non-lethal Weapons, Autonomous Mobile Equipment, Intelligent Command and Control Systems, and Energy Supply Systems. This study focuses on Intelligent Combat Robots, considering them as the most crucial element among the mentioned innovations. How will Intelligent Combat Robots be utilized on the future battlefield? The future battlefield is expected to take the form of combined human-robot warfare, where advancements in science and technology allow intelligent robots to replace certain human roles. Especially, tasks known as Dirty, Difficult, Dangerous, and Dull (4D) in warfare are expected to be assigned to robots. This study suggests three forms of Intelligent Robots: humanoid robots, biomimetic robots, and swarm drones.

A Study on Building Knowledge Base for Intelligent Battlefield Awareness Service

  • Jo, Se-Hyeon;Kim, Hack-Jun;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this paper, we propose a method to build a knowledge base based on natural language processing for intelligent battlefield awareness service. The current command and control system manages and utilizes the collected battlefield information and tactical data at a basic level such as registration, storage, and sharing, and information fusion and situation analysis by an analyst is performed. This is an analyst's temporal constraints and cognitive limitations, and generally only one interpretation is drawn, and biased thinking can be reflected. Therefore, it is essential to aware the battlefield situation of the command and control system and to establish the intellignet decision support system. To do this, it is necessary to build a knowledge base specialized in the command and control system and develop intelligent battlefield awareness services based on it. In this paper, among the entity names suggested in the exobrain corpus, which is the private data, the top 250 types of meaningful names were applied and the weapon system entity type was additionally identified to properly represent battlefield information. Based on this, we proposed a way to build a battlefield-aware knowledge base through mention extraction, cross-reference resolution, and relationship extraction.

Threat Unification using Multi-Sensor Simulator of Battlefield Helicopter and Its Implementation (전장 헬기의 다중센서 시뮬레이터를 통한 위협통합 및 구현)

  • Park, Hun-Woo;Kang, Shin-Bong;Noh, Sang-Uk;Jeong, Un-Seob
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.35-49
    • /
    • 2009
  • In electronic warfare settings, battlefield helicopters identify various threats based upon threat data, which are acquired using their multi-sensors of aircraft survivability equipment (ASE). To continually function despite of potential threats and successfully execute their missions, the battlefield helicopters have to repeatedly report threats in simulated battlefield situations. Toward this ends, the paper presents threat unification using multi-sensor simulator and its implementation. The simulator consists of (1) threat attributes generator, which models threats against battlefield helicopters and defines their specific attributes, (2) threat data generator, which generates threats, being similar to real ones, using normal, uniform, and exponential distributions, and (3) graphic display for threat analysis and unification, which shows unified threat information, for example, threat angle and its level. We implement a multi-sensor threat simulator that can be repeatedly operable in various simulated battlefield settings. Further, we report experimental results that, in addition to tangibly modeling the threats to battlefield helicopters, test the capabilities of threat unification using our simulator.

  • PDF

Model-based Design for Autonomous Defense Systmes (자치적 방어 시스템을 위한 모델베이스기반 설계)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The major objective of this research is to propose a design architecture for autonomous defense systems for supporting highly intelligent behavior by combining decision, perception, and action components. Systems with such high levels of autonomy are critical for advanced battlefield missions. By integrating a plenty of advanced modeling concepts such as system entity structure, endomorphic modeling, engine-based modeling, and hierarchical encapsulation & abstraction principle, we have proposed four layered design methodology for autonomous defense systems that can support an intelligent behavior under the complicated and unstable warfare. Proposed methodology has been successfully applied to a design of autonomous tank systems capable of supporting the autonomous planning, sensing, control, and diagnosis.

  • PDF

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

Automated Course of Action Evaluation for Military Decision-Making (지휘결심을 위한 자동 방책 평가)

  • Geewon Suh;Hyungkeun Yi;Minhyuk Kim;Byungjoo Kim;Moonhyun Lee;Jaewoo Baek;Changho Suh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.437-445
    • /
    • 2024
  • In future complex and diverse battlefield situations, the existing command system faces the challenge of delayed human judgement of strategy and low objectivity. This paper proposes an artificial intelligence model that takes situation information and course of action simulation results as input and automatically assigns scores to various evaluation elements and a comprehensive score. This tool is expected to assist the commander in making decisions, reduce the time required for making judgments, and promote impartial decision-making.