• Title/Summary/Keyword: Intelligence tutoring system

Search Result 16, Processing Time 0.024 seconds

AI-based language tutoring systems with end-to-end automatic speech recognition and proficiency evaluation

  • Byung Ok Kang;Hyung-Bae Jeon;Yun Kyung Lee
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • This paper presents the development of language tutoring systems for nonnative speakers by leveraging advanced end-to-end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non-native speech, high-performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End-to-end ASR is implemented and enhanced by using diverse non-native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI Peng-Talk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.

Artificial Intelligence in Library Instruction (인공지능을 이용한 도서관 이용자 교육)

  • Tak, Hae-Kyung
    • Journal of Information Management
    • /
    • v.27 no.3
    • /
    • pp.41-60
    • /
    • 1996
  • Export system using artificial intelligence give the technology for the varied library user instruction. Expert system showing problem solving process give educational effectives. In this paper, expert system are reviewed to discuss the application possibility in education and the model of intelligent tutoring system(ITS) applying artificial intelligence is presented.

  • PDF

Development of Personalized Learning Course Recommendation Model for ITS (ITS를 위한 개인화 학습코스 추천 모델 개발)

  • Han, Ji-Won;Jo, Jae-Choon;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.21-28
    • /
    • 2018
  • To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.

English Tutoring System Using Chatbot and Dialog System (챗봇과 대화시스템을 이용한 영어 교육 시스템)

  • Choi, Sung-Kwon;Kwon, Oh-Woog;Lee, Kiyoung;Roh, Yoon-Hyung;Huang, Jin-Xia;Kim, Young-Gil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.958-959
    • /
    • 2017
  • 본 논문은 챗봇과 대화시스템을 이용한 영어 교육 시스템을 기술하는 것을 목표로 한다. 본 논문의 시스템은 학습자의 대화 흐름을 제한하지 않고 주제를 벗어난 자유대화를 허용하며 문법오류에 대한 피드백을 한다. 챗봇과 대화시스템을 이용한 영어 교육 시스템은 대화턴 성공률로 평가되었는데, 평균 대화턴 성공률은 80.86%였으며, 주제별로는 1) 뉴욕시티투어 티켓 구매 71.86%, 2) 음식주문 71.06%, 3) 건강습관 대화 85.41%, 4) 미래화폐에 대한 생각 조사 95.09%였다. 또한 영어 문법 오류 교정도 측정되었는데 문법 오류 정확률은 66.7%, 재현율은 31.9%였다.

Analysis of functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics (개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능과 적용 사례 분석)

  • Sung, Jihyun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.303-326
    • /
    • 2023
  • Mathematics is a discipline with a strong systemic structure, and learning deficits in previous stages have a great influence on the next stages of learning. Therefore, it is necessary to frequently check whether students have learned well and to provide immediate feedback, and for this purpose, intelligent tutoring system(ITS) can be used in math education. For this reason, it is necessary to reveal how the intelligent tutoring system is effective in personalized adaptive learning. The purpose of this study is to investigate the functions and applications of intelligent tutoring system for personalized adaptive learning in mathematics. To achieve this goal, literature reviews and surveys with students were applied to derive implications. Based on the literature reviews, the functions of intelligent tutoring system for personalized adaptive learning were derived. They can be broadly divided into diagnosis and evaluation, analysis and prediction, and feedback and content delivery. The learning and lesson plans were designed by them and it was applied to fifth graders in elementary school for about three months. As a result of this study, intelligent tutoring system was mostly supporting personalized adaptive learning in mathematics in several ways. Also, the researcher suggested that more sophisticated materials and technologies should be developed for effective personalized adaptive learning in mathematics by using intelligent tutoring system.

Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System (지능형 교육 시스템의 학습자 분류를 위한 Variational Auto-Encoder 기반 준지도학습 기법)

  • Jung, Seungwon;Son, Minjae;Hwang, Eenjun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1251-1258
    • /
    • 2019
  • Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.

A Study on the Design Method of the Integrative Intelligent Model for Educational System (지능형 교육 시스템의 통합 모형 탐색 연구)

  • Heo, Gyun;Kang, Seung-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.462-472
    • /
    • 2008
  • Education is a field that has tried to make use of the advantages of computers since they were introduced to the world. Intelligent Tutoring System and multimedia have become methods of teaching students of Computer Science, Education, Psychology, and Cognitive Science. Until now, they have been designed and produced only on the basis of a very specific domain and format. However, in the education field, most learners ask for integrated service that is practical, realizable, and sensitive to technological change. Therefore, in this study, we would like to present the technological and formal integration model as an ITS model which acknowledges changes in the fields of technology and education. As a technological integration model, the integration model of traditional Symbolic Artificial Intelligence and Artificial Neural Networks was presented. As a formal integration model, three integration models were presented according to (a) the process of learning diagnosis (b) learners' action behaviors (c) intelligence service respectively.

The Design of Student Module in the ITS for learning Electronic Calculator Architecture (전자계산기구조 학습을 위한 ITS 학습자 모듈의 설계)

  • Oh, Pill-Woo;Kim, Do-Yun;KIm, Myeong-Ryeol
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2005
  • It has been found that the learning method based on conventional CAI(Computer Assisted Instruction) to be inadequate and inefficient as it is designed without considering the individual learning characteristics of the learners. In order to rectify and remedy the problem, the development of an ITS(Intelligent Tutoring System) that is adequately equipped with an artificial intelligence that successfully interprets the individual learning ability characteristics through accumulated individual data is in order. This study attempts to verify the individual acquisition ability and the possible error committed by learners in the process of learning in order to present the elements to be considered for designing a successful student module that enables the effective learning through the 'learner ability grouping' for learning Electronic Calculator Architecture.

  • PDF

A Study on Generative AI-Based Feedback Techniques for Tutoring Beginners' Error Codes on Online Judge Platforms

  • Juyeon Lee;Seung-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.191-200
    • /
    • 2024
  • The rapid advancement of computer technology and artificial intelligence has significantly impacted software education in Korea. Consequently, the 2022 revised curriculum demands personalized education. However, implementing personalized education in schools is challenging. This study aims to facilitate personalized education by utilizing incorrect codes and error information submitted by beginners to construct prompts. And the difference in the frequency of correct feedback generated by the generative AI model and the prompts was examined. The results indicated that providing appropriate error information in the prompts yields better performance than relying solely on the excellence of the generative AI model itself. Through this research, we hope to establish a foundation for the realization of personalized education in programming education in Korea.

Adaptive Learning Recommendation System based on ITS (ITS 기반의 적응형 학습 추천 시스템)

  • Moon, Seok-jae;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.662-665
    • /
    • 2013
  • ITS(Intelligent Tutoring System) is a system that provides active and flexible tutoring conditions to learners, having adopted artificial intelligence to overcome the limitations of CAI(Computer Assisted Instruction). However, the existing ITS has a few problems; the system provides the same contents to every learner, not considering main variants of their learning and achievement, characters and levels, and therefore, it does not generate satisfactory results; the system does not offer a properly designed course schedule. Therefore, this thesis proposes ARS(Adaptive Recommendation System), founded on ITS, that provides contents designed based on the characters and levels of learners. To catch the characters of learners, the important variant for successful learning, ARS applies and embodies a module of self-assessment test. Also, it puts weighs according to the areas of learning which is different from the simplified assessment that asks for short and mechanical answers for the purpose of knowing the levels of the learners.

  • PDF