This paper presents the development of language tutoring systems for nonnative speakers by leveraging advanced end-to-end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non-native speech, high-performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End-to-end ASR is implemented and enhanced by using diverse non-native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI Peng-Talk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.
인공지능을 이용한 전문가 시스템은 컴퓨터를 통하여 다양하게 도서관 이용자의 교육을 할 수 있는 기술을 제공한다. 전문가 시스템은 문제해결 과정을 보여줌으로써 교육적인 효과를 가져올 수 있다. 본 논문에서는 전문가 시스템의 이론적 배경을 통해 교육에 이용될 수 있는 가능성을 알아보고, 인공지능을 이용한 지능 지도 시스템(ITS)의 모델을 제시하였다.
학습코스 선정에 많은 어려움과 시행착오를 겪고 있는 사용자들에게 수준별 학습코스를 제공하기 위해, ITS(Intelligence Tutoring System)를 위한 동적인 학습자 맞춤형 학습코스 추천 모델을 개발하였다. 이를 위해, 개인화 학습코스 추천모델에서는 먼저 학습자 프로파일을 분석하고, 단어별 가중치를 계산하여 핵심 키워드를 추출한다. 추출된 단어는 Cosine Similarity 기법을 통해 유사도를 측정하고, 최종적으로 유사도가 높은 상위 3개 과정이 학습자에게 추천된다. 추천모델의 효과를 분석하기 위해, 경기도 소재 교육기관에 추천모델을 적용하였고, 만족도 조사를 통하여 설문 항목별 평균, 표준편차, 왜도, 첨도 값을 계산하였다. 실험결과, 정확성, 새로움, 자기참조, 유용성에서 높은 만족도를 보였으며, 추천모델의 실효성을 검증했다. 본 연구는 그동안 국내 외에서 충분히 다뤄지지 않았던 기계학습 중심의 맞춤형 학습코스를 추천했다는 점에서 의미가 있다.
본 논문은 챗봇과 대화시스템을 이용한 영어 교육 시스템을 기술하는 것을 목표로 한다. 본 논문의 시스템은 학습자의 대화 흐름을 제한하지 않고 주제를 벗어난 자유대화를 허용하며 문법오류에 대한 피드백을 한다. 챗봇과 대화시스템을 이용한 영어 교육 시스템은 대화턴 성공률로 평가되었는데, 평균 대화턴 성공률은 80.86%였으며, 주제별로는 1) 뉴욕시티투어 티켓 구매 71.86%, 2) 음식주문 71.06%, 3) 건강습관 대화 85.41%, 4) 미래화폐에 대한 생각 조사 95.09%였다. 또한 영어 문법 오류 교정도 측정되었는데 문법 오류 정확률은 66.7%, 재현율은 31.9%였다.
수학은 계통성이 강한 학문으로 이전 단계에서의 학습 결손이 다음 학습에 큰 영향을 주기 때문에 학생들의 학습이 잘 이루어졌는지 수시로 확인하고, 즉각적으로 피드백을 제공해 주는 것이 필요하며, 이를 위해 수학교육에서 인공지능 교육시스템(ITS)을 활용할 수 있다. 이에 본 연구에서는 개인 맞춤형 수학 학습을 실행하기 위해 적용될 수 있는 인공지능 교육시스템의 기능이 무엇인지 살펴보고, 이를 실제로 적용해 본 결과를 분석하여 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습의 효과성을 구체적으로 살펴보는 것을 목적으로 하였다. 이를 위해 개인 맞춤형 학습과 수학교육에서 인공지능이 활용된 선행연구 내용을 분석하여 개인 맞춤형 수학 학습을 위한 인공지능 교육시스템의 기능을 추출하고, 이것을 반영한 학습 및 수업을 설계하여 초등학교 5학년 학생들에게 약 3개월 간 적용해 본 결과를 분석하였다. 그 결과, 개인 맞춤형 수학 학습을 위해 활용될 수 있는 인공지능 교육시스템의 기능은 크게 진단 및 평가, 분석 및 예측, 피드백 및 콘텐츠 제공으로 나눌 수 있었다. 또한 이러한 기능을 반영한 학습 설계를 초등학생들에게 적용한 결과, 개인 맞춤형 수학 학습에 인공지능 교육시스템이 어떻게 효과적으로 활용될 수 있는지에 대한 시사점을 얻었다. 그리고 앞으로 인공지능 교육시스템을 활용한 개인 맞춤형 수학 학습이 더욱 효과적으로 이루어질 수 있기 위해 더 정교한 기술과 자료 개발이 필요하다는 점을 제언하였다.
Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.
Education is a field that has tried to make use of the advantages of computers since they were introduced to the world. Intelligent Tutoring System and multimedia have become methods of teaching students of Computer Science, Education, Psychology, and Cognitive Science. Until now, they have been designed and produced only on the basis of a very specific domain and format. However, in the education field, most learners ask for integrated service that is practical, realizable, and sensitive to technological change. Therefore, in this study, we would like to present the technological and formal integration model as an ITS model which acknowledges changes in the fields of technology and education. As a technological integration model, the integration model of traditional Symbolic Artificial Intelligence and Artificial Neural Networks was presented. As a formal integration model, three integration models were presented according to (a) the process of learning diagnosis (b) learners' action behaviors (c) intelligence service respectively.
기존 CAI(Computer Assisted Instruction) 학습방법에서의 문제점은 학습자의 개인적 특성을 충분히 고려하지 못한 채 교수설계자가 정한 학습 경로에 따라 학습하도록 구현되었다는 점이다. 이런 점을 해결하기 위해서는 시스템 설계 시 누적된 개인자료를 통하여 개인차를 지능적으로 판단하고, 결손 된 부분을 처방할 수 있는 인공지능을 갖춘 ITS(Intelligent Tutoring System)가 필요하다. 본 연구에서는 향후 시스템 설계자가 전자계산기구조 학습을 위한 시스템 설계 시 학습자가 학습과정에서 범할 수 있는 오류와 성취능력수준을 파악하여 수준별 학습이 가능토록 할 수 있는 학습자 모델링을 설계하는데 있어 고려하여야 할 요소들을 제시하였다.
컴퓨터 기술과 인공지능의 비약적인 발전이 국내 소프트웨어 교육에서도 많은 영향을 끼치고 있다. 이에 따라 2022 개정 교육과정에서도 맞춤형 교육을 요구하게 되었지만, 학교에서 맞춤형 교육을 실현하기에는 어려움이 있다. 이에 본 연구에서는 맞춤형 교육 실현을 위해 초보 학습자가 제출한 오답 코드와 오답 정보들을 활용하여 적절한 피드백 생성을 위한 프롬프트를 구성하였다. 그리고 생성형 인공지능 모델과 프롬프트 조합에 따른 정상 피드백 생성 빈도의 차이를 실제 데이터를 활용하여 분석하였다. 그 결과, 생성형 인공지능 모델 자체의 우수성보다 오답 정보를 포함한 프롬프트가 더 우수한 피드백 생성 성능을 나타내는 것을 확인하였다. 본 연구를 통해 국내 프로그래밍 교육에서 맞춤형 교육의 실현을 위한 토대가 되기를 기대한다.
지능형 교수 시스템은 컴퓨터 보조 학습의 한계를 극복하고자 인공지능 기법을 도입하여 학습자의 현재 상황에 동적으로 융통성 있는 교육 여건을 지원하는 시스템이다. 그러나 기존의 지능형 교수 시스템들은 학습 성취도 향상에 중요 변인인 학습자의 특성, 학습자 수준 등을 고려하지 않고, 획일화 된 학습 내용들을 제공하고 있다. 이로 인해 효과적인 학습에 어려움이 있으며, 학습자의 학습 목표에 맞는 코스 스케줄링이 적응력 있게 동적으로 제공되지 못하는 문제점이 있다. 본 논문에서는 학습자의 특성과 학습자의 수준에 맞는 학습 내용 및 동적 학습 코스 제공을 위한 ITS 기반의 적응형 학습 추천 시스템을 제안한다. 성공적인 학습을 우한 중요 변인인 학습자의 특성 파악을 위해 자가 진단 테스트 모듈을 적용하였다. 그리고 학습자의 수준 파악을 위해 기존 단답식 위주의 단순 평가가 아닌 문항반응이론에 근거하여 학습 요소별 학습자의 객관성 있는 수준을 파악을 위해 학습 평가 모듈을 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.