• Title/Summary/Keyword: Intelligence Optimization

Search Result 384, Processing Time 0.028 seconds

A new visual tracking approach based on salp swarm algorithm for abrupt motion tracking

  • Zhang, Huanlong;Liu, JunFeng;Nie, Zhicheng;Zhang, Jie;Zhang, Jianwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1142-1166
    • /
    • 2020
  • Salp Swarm Algorithm (SSA) is a new nature-inspired swarm optimization algorithm that mimics the swarming behavior of salps navigating and foraging in the oceans. SSA has been proved to enable to avoid local optima and enhance convergence speed benefiting from the adaptive nonlinear mechanism and salp chains. In this paper, visual tracking is considered to be a process of locating the optimal position through the interaction between leaders and followers in successive images. A novel SSA-based tracking framework is proposed and the analysis and adjustment of parameters are discussed experimentally. Besides, the qualitative analysis and quantitative analysis are performed to demonstrate the tracking effect of our proposed approach by comparing with ten classical tracking algorithms. Extensive comparative experimental results show that our algorithm has good performance in visual tracking, especially for abrupt motion tracking.

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

Minimizing Sensing Decision Error in Cognitive Radio Networks using Evolutionary Algorithms

  • Akbari, Mohsen;Hossain, Md. Kamal;Manesh, Mohsen Riahi;El-Saleh, Ayman A.;Kareem, Aymen M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2037-2051
    • /
    • 2012
  • Cognitive radio (CR) is envisioned as a promising paradigm of exploiting intelligence for enhancing efficiency of underutilized spectrum bands. In CR, the main concern is to reliably sense the presence of primary users (PUs) to attain protection against harmful interference caused by potential spectrum access of secondary users (SUs). In this paper, evolutionary algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA) are proposed to minimize the total sensing decision error at the common soft data fusion (SDF) centre of a structurally-centralized cognitive radio network (CRN). Using these techniques, evolutionary operations are invoked to optimize the weighting coefficients applied on the sensing measurement components received from multiple cooperative SUs. The proposed methods are compared with each other as well as with other conventional deterministic algorithms such as maximal ratio combining (MRC) and equal gain combining (EGC). Computer simulations confirm the superiority of the PSO-based scheme over the GA-based and other conventional MRC and EGC schemes in terms of detection performance. In addition, the PSO-based scheme also shows promising convergence performance as compared to the GA-based scheme. This makes PSO an adequate solution to meet real-time requirements.

An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils

  • Luat, Nguyen-Vu;Nguyen, Van-Quang;Lee, Seunghye;Woo, Sungwoo;Lee, Kihak
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.583-598
    • /
    • 2020
  • This study is attempted to propose a new hybrid artificial intelligence model called integrative genetic algorithm with multivariate adaptive regression splines (GA-MARS) for settlement prediction of shallow foundations on sandy soils. In this hybrid model, the evolution algorithm - Genetic Algorithm (GA) was used to search and optimize the hyperparameters of multivariate adaptive regression splines (MARS). For this purpose, a total of 180 experimental data were collected and analyzed from available researches with five-input variables including the bread of foundation (B), length to width (L/B), embedment ratio (Df/B), foundation net applied pressure (qnet), and average SPT blow count (NSPT). In further analysis, a new explicit formulation was derived from MARS and its accuracy was compared with four available formulae. The attained results indicated that the proposed GA-MARS model exhibited a more robust and better performance than the available methods.

A Two-Stage Stochastic Approach to the Artillery Fire Sequencing Problem (2단계 추계학적 야전 포병 사격 순서 결정 모형에 관한 연구)

  • Jo, Jae-Young
    • Journal of the military operations research society of Korea
    • /
    • v.31 no.2
    • /
    • pp.28-44
    • /
    • 2005
  • The previous studies approach the field artillery fire scheduling problem as deterministic and do not explicitly include information on the potential scenario changes. Unfortunately, the effort used to optimize fire sequences and reduce the total time of engagement is often inefficient as the collected military intelligence changes. Instead of modeling the fire sequencing problem as deterministic model, we consider a stochastic artillery fire scheduling model and devise a solution methodology to integrate possible enemy attack scenarios in the evaluation of artillery fire sequences. The goal is to use that information to find robust solutions that withstand disruptions in a better way, Such an approach is important because we can proactively consider the effects of certain unique scheduling decisions. By identifying more robust schedules, cascading delay effects will be minimized. In this paper we describe our stochastic model for the field artillery fire sequencing problem and offer revised robust stochastic model which considers worst scenario first. The robust stochastic model makes the solution more stable than the general two-stage stochastic model and also reduces the computational cost dramatically. We present computational results demonstrating the effectiveness of our proposed method by EVPI, VSS, and Variances.

Energy-Saving Strategy for Green Cognitive Radio Networks with an LTE-Advanced Structure

  • Jin, Shunfu;Ma, Xiaotong;Yue, Wuyi
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.610-618
    • /
    • 2016
  • A green cognitive radio network (CRN), characterized by base stations (BSs) that conserve energy during sleep periods, is a promising candidate for realizing more efficient spectrum allocation. To improve the spectrum efficiency and achieve greener communication in wireless applications, we consider CRNs with an long term evolution advanced (LTE-A) structure and propose a novel energy-saving strategy. By establishing a type of preemptive priority queueing model with a single vacation, we capture the stochastic behavior of the proposed strategy. Using the method of matrix geometric solutions, we derive the performance measures in terms of the average latency of secondary user (SU) packets and the energy-saving degree of BSs. Furthermore, we provide numerical results to demonstrate the influence of the sleeping parameter on the system performance. Finally, we compare the Nash equilibrium behavior and social optimization behavior of the proposed strategy to present a pricing policy for SU packets.

Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller (적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.730-737
    • /
    • 2001
  • In this paper, an stabilization control method using adaptive neuro-fuzzy controller(ANFC) is proposed for modeling of nonlinear complex systems. The proposed adaptive neuro-fuzzy controller implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks from input and output data of processes. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

Determining the optimal number of cases to combine in a case-based reasoning system for eCRM

  • Hyunchul Ahn;Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.178-184
    • /
    • 2003
  • Case-based reasoning (CBR) often shows significant promise for improving effectiveness of complex and unstructured decision making. Consequently, it has been applied to various problem-solving areas including manufacturing, finance and marketing. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still challenging issue. Most of previous studies to improve the effectiveness for CBR have focused on the similarity function or optimization of case features and their weights. However, according to some of prior researches, finding the optimal k parameter for k-nearest neighbor (k-NN) is also crucial to improve the performance of CBR system. Nonetheless, there have been few attempts which have tried to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the new model to the real-world case provided by an online shopping mall in Korea. Experimental results show that a GA-optimized k-NN approach outperforms other AI techniques for purchasing behavior forecasting.

  • PDF

Developing a Big Data Analytics Platform Architecture for Smart Factory (스마트공장을 위한 빅데이터 애널리틱스 플랫폼 아키텍쳐 개발)

  • Shin, Seung-Jun;Woo, Jungyub;Seo, Wonchul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1516-1529
    • /
    • 2016
  • While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.

A Study on Operation Problems for the Emergency Medical Process Using Real-Time Data (실시간데이터를 활용한 응급의료 프로세스 운영에 관한 연구)

  • Kim, Daebeom
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.125-139
    • /
    • 2017
  • Recently, interest in improving the quality of EMS(emergency medical services) has been increasing. Much effort is being made to innovate the EMS process. The rapid progress of ICT technology has accelerated the automation or intelligence of EMS processes. This study suggests an emergency room management method based on real-time data considering resource utilization optimization, minimization of human error and enhancement of predictability of medical care. Emergency room operation indices - Emergency care index, Short stay index, Human error inducing index, Waiting patience index - are developed. And emergency room operation rules based on these indices are presented. Simulation was performed on a virtual emergency room to verify the effectiveness of the proposed operating rule. Simulation results showed excellent performance in terms of length of stay.