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Abstract 
 

Cognitive radio (CR) is envisioned as a promising paradigm of exploiting intelligence for 

enhancing efficiency of underutilized spectrum bands. In CR, the main concern is to reliably 
sense the presence of primary users (PUs) to attain protection against harmful interference 

caused by potential spectrum access of secondary users (SUs). In this paper, evolutionary 

algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA) are 
proposed to minimize the total sensing decision error at the common soft data fusion (SDF) 

centre of a structurally-centralized cognitive radio network (CRN). Using these techniques, 

evolutionary operations are invoked to optimize the weighting coefficients applied on the 

sensing measurement components received from multiple cooperative SUs. The proposed 
methods are compared with each other as well as with other conventional deterministic 

algorithms such as maximal ratio combining (MRC) and equal gain combining (EGC). 

Computer simulations confirm the superiority of the PSO-based scheme over the GA-based 
and other conventional MRC and EGC schemes in terms of detection performance. In addition, 

the PSO-based scheme also shows promising convergence performance as compared to the 

GA-based scheme. This makes PSO an adequate solution to meet real-time requirements. 
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1. Introduction 

Electromagnetic spectrum is a scarce resource for wireless communication. With the 

advancement of technology, demands for new spectrum bands have increased significantly 

and have consequently led to spectrum scarcity. Using the static spectrum allocation scheme, 
Federal Communications Commission (FCC) allocates spectrum bands to users exclusively. 

FCC research proves that the main reason for the scarcity of spectrum is the underutilization of 

frequency spectrum by the licensed users either temporally or spatially [1]. To overcome this 

problem, dynamic spectrum allocation has been widely proposed as means to improve 
spectrum efficiency [1][2]. Cognitive Radio (CR) is a new paradigm that can be seen as a 

considerable step towards realizing dynamic spectrum allocation. CR users are defined as 

secondary users (SUs) that can sense the spectrum bands of licensed or primary users (PUs) 
and access these bands temporarily if the PUs are declared absent. Using this access strategy, 

the spectrum resources can be assured that they can be always in use and thus, spectrum 

efficiency is enhanced. This secondary access of PU bands can be suggested for any upcoming 
emerging wireless technologies and therefore the spectrum scarcity can be greatly resolved.  

Among the main CR functions, CR systems have to keep monitoring the spectrum periodically; 

detect the occupancy of the spectrum and opportunistically use spectrum holes with least 

possible interference with PUs. However because of the shadowing effect and hidden terminal 
problem, the SU may not detect the activity of the PU within the short interval of sensing 

period. And thus the detection performance might be hugely degraded [3]. In [4][5][6], authors 

proposed cooperative spectrum sensing to overcome this problem and minimize the 
interference. Among all spectrum sensing techniques, energy detection is recognized by its 

low implementation cost and compatibility with legacy primary systems. The simplicity of 

energy detectors is due to the fact that they only need to measure the power of the received 

signal to identify the presence of PU signals with unknown frequency locations, waveform 
structures and power strengths. Fusion Center (FC) makes a final decision on the presence of 

PU based on different schemes. These schemes are classified as hard decision fusion (HDF) 

[4][7][8], soft decision fusion (SDF) [9][10][11]. In [12], it has been shown that the detection 
performance of the SDF-based techniques is better than that of HDF techniques. In [12], 

maximal ratio combining- (MRC-) and equal gain combining- (EGC-), based SDF-based 

linear cooperative spectrum sensing method were used to find the optimal weighting vector. In 
this paper, SDF based particle swarm optimization (PSO) and genetic algorithm (GA) in 

cooperative spectrum sensing has been used to evaluate the optimal weighting vector. 

Proposed schemes are implemented at the fusion center of a linear SDF scheme to reduce 

global probability of error and compared with other conventional methods. Simulation results 
and analysis confirm that the proposed schemes are efficient and stable and outperform 

conventional MRC- and EGC- based SDF schemes. In addition, it has been shown that 

PSO-based method provides better error and convergence performance than GA-based SDF 
scheme. 

2. System Model 

In cognitive radio networks (CRNs), the detection performance could be degraded when the 

sensing decisions are forwarded to a fusion center through fading channels. In this paper, 

SDF-based cooperative spectrum sensing is used to minimize probability of sensing error.   Fig. 
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1 shows a deployment of CRN [13]. As it can be seen in Fig. 1, M SUs are acting as relays and 

they amplify-and-forward (AF) their individual statistical measurements of PU availability to 
a common FC. The use of a weighting vector in the linear soft fusion helps to eliminate the 

need for finding optimal thresholds for individual SU. Fig. 1 presents two links, namely 

primary user-secondary user (PU-SU) link and secondary user-fusion center (SU-FC) link.  

 

 

Fig. 1. Block diagram of the CRN 

Each SU individually performs spectrum sensing individually to detect whether the PU is 

present or absent. The formulation of binary hypothesis test is: 

  
                                              

                               
 (1) 

where the received sampled signal is denoted by       at     SU receiver and          , 

         , K is the total number of samples of the received signal defined by  K=2    
wherein   and    are, respectively, the bandwidth of the signal and  sensing time,    is the 

channel gain between PU and     SU,      is the PU transmitted signal which is presumed to 

be independent and identically distributed (i.i.d.) Gaussian random process with zero mean 

and variance   
 , and       is assumed as AWGN with zero mean and variance    

 . FC 

calculates the final test statistic Z before representing decision making block by   
     
 
    where    is the energy collected by FC from the      SU signal and calculated by 

           
  

    where                          is the analogous signal which is 

received at FC wherein      is the transmit power of     SU and    is the channel gain between 

    SU and FC. 

By denoting {    } = {   |  } and {     } = {  |  }, the two sets of test statistics can be 

written as                               
 

 ,                               
 

, each test statistic is 

approximated by central limit theorem (CLT) for a large number of samples, which is 

normally distributed with mean and variance given by [9]: 

                          
    (2) 

                          
    (3) 
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where           
  and           

 .     
          

    

    
  and     

          
     

   
  

    
  are variances of       under hypotheses    and   , respectively. Assuming that 

                 
  and              

     
   

 , in calculation we have:                

or                        where                       
 
 and                       

 
. 

Next, all the individual test statistics {    are used to linearly formulate the resultant test 

statistic of the      cluster,   , which can be expressed as         
 
              when  

         . 

It is assumed that the reporting channel (SU-FC) noise       is AWGN with zero mean and 

variance   
  and finally,    is the weighting coefficient of the     path. Since all random 

variables {  } are normally distributed, their linear combination which represents the      
cluster test statistic    has also normal distribution with parameters as follows: 

                  
               

            (4) 

                  
               

            (5) 

where                   
  denotes the weighting coefficients vector which is to be 

optimized and the superscript T represents the transpose of the vector. The covariance matrices 

under    and    are                
   and                     

     
   

      
  

 
 , 

respectively where         is square diagonal matrix whose diagonal elements are the 

elements of a given vector. Assuming the energy threshold at FC is     then,      
     

demonstrates the likelihood ratio. Therefore, the final probability of detection    and 

probability of false alarm    can be expressed as                     

                    
           

           
    

        
          

               
  (6) 

                    
           

           
    

        
          

               
  (7) 

Probability of detection    in terms of a given probability of false alarm   , and     in terms of 

a given   , are concluded as fallow:        

                                                        
                                    

     

               
  (8) 

               
                                    

     

               
  (9) 

where        
 

   

  

 
   

     .  

For simplicity, it is assumed that the probability of false alarm Pf,j is the same with probability 

of miss match       . It means     =     or     = 1-    . Hence, by equating the expressions in 
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equations (8) and (9), we would obtain:  

   
        

          

               
       

        
          

               
  (10) 

   
        

          

               
     

                   

               
  (11)                                

After some simplifications, the optimal threshold    can be obtained that will minimize the 

total probability of error,    and can be expressed as: 

     
           

                  
   

          
     

  (12) 

Finally, the replaced value of    (which should be a scalar value) will then be substituted back 

into equations (6) and (7). Summing them up, the total probability of error,     has been 

obtained and is simply represented by: 

              
        

          

               
     

                   

               
  (13) 

It is observable that the probability of error is greatly dependent on      . Therefore, the optimal 

solution is the weighting vector that minimizes the total probability of error    so that the 
interference to PU is reduced. In our paper, equation (13) is used as an objective function, 

However, to reduce the search space on which the PSO works, the       used in this work should 

satisfies the conditions        and     
  

     . 

3. SDF Based Weighting Methods For Cooperative Spectrum Sensing 

3.1 Conventional Schemes 

Equal gain combining (EGC) scheme is one of the simplest SDF-based weighting schemes 

and it is same as the one used in systems with multiple receive antennas. It does not require any 
channel estimator but it still performs much more accurate than the conventional HDF 

techniques. Weights of each path are individually assigned at fusion center and are reversely 

related to the number of SUs. In [12], authors discussed EGC scheme where weighting 

coefficient vector is-  

 

    
 
  
  (14) 

 

Another SDF scheme is the maximal-ratio combining (MRC) where a distinct weighting 
coefficient is allocated for each SU’s signal at the fusion center; the final sensing decision is 
made by combining all contributions from SUs. The allocated weighting vector is correlated to 

the quality of the received PU signal at the global fusion center. Thus, if  the received 
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signal-to-noise ratio (SNR) of a particular SU at the fusion center is high, a larger weighting 

coefficient is assigned. On the other hand, a small weighting coefficients is assigned when 
their corresponding SNR values are low to reduce the negative contribution on the final 

sensing decision due to shadowing or deep fades over the SU-FC links.  By satisfying  ||   || = 

1 , the weighting coefficient for the     SU is determined as follows [12] 

                                             

   

 

   

     
  
  

 

   

      
 

 

   

   
  

  
  

 

                                                     
  

  
 (15) 

where    is the estimated signal-to-noise ratio at the fusion center for the i
th

 SU. To observe the 

performance of the MRC, weighting coefficient obtained from equation (15) is applied in 

equation (13) which is performed in next section. 
 

3.2 Evolutionary Algorithm-Based SDF-Based Linear Cooperative Spectrum 
Sensing  

In this part, the GA and PSO evolutionary algorithms used to minimize the total sensing error 

by optimizing the weighting coefficients vector.  

3.2.1 Proposed GA Based Cooperative Spectrum Sensing 

GA  is  classified as a stochastic evolutionary search  algorithm  that mimics natural evolution. 

It  has been used to solve difficult non-deterministic problems and machine  learning as well as 

for many other engineering applications. GA is a population-based method in which each 

individual  in the population evolves to create new individuals that form new populations. This 

evolutionary process continues until no improvement on the fitness score and then the optimal 

individual is obtained from the last obtained population. 

In this paper GA-based method has been proposed, an initial population of pops possible 

solutions is generated randomly and each individual is normalized to satisfy the constraints.  

The goal is to find the optimal set of weighting vector values to maximize detection 

performance. When it reaches the predefined maximum number of generations, GA is 

terminated and the weighted vector values that minimize the probability of error is considered 

as the best solution. Let assume that there are M SUs and Z1, Z2…ZM are the soft decisions of 

SU1, SU2….SUM on the presence of PUs, and        is the weighting vector of the    individual 

that consists of              , the fitness value for the j
th
 individual is defined as 

 

                 where          =1 (16) 

 

   stands for probability of error. The main operations of the proposed GA are selection, 

crossover, and mutation. For selection, the idea is to choose the best chromosomes for 

reproduction through crossover and mutation. The smaller the fitness (probability of error) 

value the better the solution obtained. In this paper “Roulette Wheel Selection” method has 

been used. The probability of selecting the j
th

 individual or chromosome, jp , can be written as
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 (17)
 

 

The chromosomes with minimum probability of error value will be directly transferred to the 

next generation through elitism operation. After the selection process is done, the next step is 

crossover. The crossover starts with pairing to produce new offspring. A uniform random 

number generator has been used to select the row numbers of chromosomes as mother (ma) or 

father (pa). Here a random population of choromosomes is shown in matrix A, where pops is 

total number of chromosomes, M is number of secondary users. 

 

                                     

          
          
    

                      

                       (18)   

 

It begins by randomly choosing a variable in the first pair of parents to be the crossover point. 

In the illustration crossover point is α and β is a random value on the interval [0, 1]. As for the 

GA crossover operation, two parents are chosen and the new offsprings are formed from 

combinations of these parents. In our proposed algorithm, hybridization of an extrapolation 

method with a crossover method is imvoked to enhance the quality of obtainable solutions [13]. 

Commonly, one of the main reasons of a population converging to local optima is when large 

number of individuals sharing the same genetic material. In this work, the random offspring 

generation is realized by the usage of roulette wheel crossover technique so that there is a very 

narrow possibility to get similar genotype [13], and consequently, this will prevent premature 

convergence of genetic algorithm to local minimum. The GA crossover operation is 

graphically expalined in Fig.  2. 

 

 

Fig. 2. GA crossover operation 
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For Parent1 (ma)  offspring1 (ma): 

                                           

                                         

                         
 

For Parent2 (pa)  offspring2 (pa): 

                                        

                                          

                         

 

 
The next step after crossover is the mutation operation. The total number of variables that can 

be mutated equals to the mutation rate times the population size. The row and column numbers 

of variables are nominated randomly and then these nominated variables are replaced by new 
random ones. For instance, if the mutation rate is 60% and the population size = 5 

chromosomes as showns in matrix A, then, the total number of variable that has to be mutated 

is 0.6 * 5 = 3 variables. Assume that the following pairs have been selected randomly from A:    
mrow = [4 3 5]   and mcol =  [2 5 1], where mrow is the row index and mcol is the column index 

of the population. Then, the varibales to be mutated can be highlighted as shown in matrix A 

below. 

 

                              

 
 
 
 
 
               
               
               
               
                

 
 
 
 

                                (19) 

 
Assume that the 4

th
 chromosome in A is defined as [                   ]= [0.0551     0.8465     

0.9891     0.2478     0.0541].  Then, the mutation process of, for example, the variable A(4, 2) 

     is illustrated in Fig. 3. During the mutation operation, the previous value of      
       is replaced by another random value and the new coefficient becomes            . 
The mutation parameter helps to enhance the  exploration of a predefined search space. 

 

 
 

Fig. 3. GA mutation representation 
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The proposed GA based optimization algorithm for SDF-based cooperative spectrum 

sensing can be outlined as follows: 

 
Step 1: Set t = 0 and randomly generate a population of pops chromosomes each of which is M 

digits long, where M is the number of secondary users in the network. 

 

Step 2: Decode each chromosome in the random population into its corresponding weighting 

coefficients vector where the weighting coefficient vector                   
  ;      

satisfying the condition;  which is used to minimize the detection error. 

  

Step 3: Normalize the weighting coefficient vector dividing                   
  by its 

2-norm such that          
       

      
  

    
 
  

   so that the constraint               is satisfied. 

Step 4: Compute the fitness value of every normalized decoded weighting vector,          rank 

their corresponding chromosomes according to their fitness value and identify the best 

chromosomes             , where                     denotes floor operation. 

 

Step 5: Update      and reproduce                  new chromosomes (candidate 

solutions) using genetic algorithm operations: selection, crossover and mutation where     
denotes ceiling operation. 
 

Step 6: Construct a new set of population pops by concatenating the newly          
          reproduced chromosomes with the best                found in       . 
 
Step 7: Decode and normalize  the chromosomes of the new population pops as in Step 2 and 

Step 3 respectively. 

 
Step 8: Evaluate the fitness value of each chromosome as in Step 4. 

 

Step 9: If it is equal to predefined number of generation(iterations) ngener, stop. Otherwise go 

to Step 5 

3.2.2 Proposed PSO Based Cooperative Spectrum Sensing 

PSO algorithm, introduced by Kennedy and Eberhart in 1995 [14], is abstracted from social 

behavior of swarm of fishes and birds. The behavior of these social organizations is emulated 
by PSO algorithm .Each particle in PSO algorithm functions based on its own knowledge as 

well as group knowledge and has two main features: position and velocity. The particles 

follow an important and simple rule: to take after the success of individuals and their own 
successes. In this algorithm, each particle in the design space iteratively tries to find the best 

position, such as objective function optimum value. The information about the best position is 

exchanged among the particles during iterations. This information enables individual particles 

to update their positions and velocities to obtain the best position. As such, after adequate 
number of iterations, the algorithm converges to the optimal solution of the objective function.  

In this work, we have used an inertia weight in the velocity update equation of the algorithm. 

Logically, at the beginning of the run a large inertia weight allows the PSO to locate the 
approximate region in which the minimizer (global minima) is situated. Empirical 

experiments have been performed with an inertia weight set to decrease linearly from 0.9 to 

0.4 during the course of a simulation [15]. This setting allows the PSO to explore a large area 
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at the start of the simulation run (when the inertia weight is large) and to refine the search later 

by using a smaller inertia weight (better exploitation). The higher the inertia weight the greater 
the probability that the algorithm will explore a region outside the basin of attraction of the 

current local minimum whereas lower inertia weight helps the algorithm to search with small 

variations of promising regions so that global optimal solutions can be captured [16]. In this 

paper, the problem is to minimize the objective function          where                    
and M is the number of variables of          with         where      and      are 

lower and upper limits on  . The steps involved in the PSO algorithm are as follows: 

 

Step 1: Initialization of the PSO algorithm by randomly generating N particle positions each 

of which is of M-length representing                     
  and are uniformly distributed in 

the range of    to    whereas the N particle velocity vectors which are initially set to zero; 

that is       
   
            :          . To simplify the notation, particle position and 

velocity at iteration j are demonstrated by       
   

 and       
   

, respectively. The uniform 

distribution helps to prevent premature convergence of swarm particles to local minimum. 

 

Step 2: In this step, the value of the objective function for each of the particle positions 

generated in step 1 is calculated as          
    ,          

    , … ,          
    . 

 
Step 3: The values of the objective functions obtained in step 2 are compared in this step and 

their smallest value is selected. Next, the particle position corresponding to minimum function 

value is defined as         and iteration number is set to    . 

 

Step 4: The velocity of the     particle at the     iteration is updated based on the following 

equation: 

      
   
       

     
                    

                        
       (20) 

where individual and social learning acceleration coefficients are, respectively, denoted by    

and   ,    and              are random numbers with uniform distributions in the range of 0 

to 1 which introduce stochastic components to the algorithm and   is the inertia weight whose 

value is reduced from 0.9 to 0.4 during the process to obtain compromised performance 

between exploration and exploitation [16]. At the     iteration, the best experienced particle 

position which minimizes the objective function is denoted by        . The best experienced 

particle position among all iteration is called global best position and is expressed by      . 
 

Step 5: At the     iteration, the new position of the     particle is updated as follows: 

       
           

           
   

 (21) 

Again, the value of the objective function for each of the particle positions generated in this 

step is calculated as          
    ,          

    , … ,          
    .  

 

Step 6: The values of the objective functions obtained in step 5 are compared and the particle 

position corresponding to minimum value of the objective function is defined as        . The 

value of the       will be replaced by the value of the         if                       . 
 

Step 7: The convergence of the algorithm is checked in this step and if the algorithm is 
converged to a stable value, the procedure is terminated. Otherwise, the iteration number is set 
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to       and the process in repeated from step 4. 

 
In this paper, the objective function is the probability of error of primary users in CR 

networks. The algorithm aims to find the optimized weighting coefficient vector that 

minimizes the total probability of decision error in [13] as explained in section 2. 

4. Experimental Results and Analysis 

In this section, simulation results and analyses are provided for proposed evolutionary 
algorithms based cooperative spectrum sensing as well as conventional MRC- and EGC-based 

SDF schemes. M and B are the number of users and bandwidth and equal to 25 and 6 MHz, 

respectively.    is 25 μsec ,         dBm,   
     dBm . Also, we randomly generate the 

noise {20      

   30 dBm, 20     
    30 dBm }  and the channel gain {10       20 

dBm , 10       20 dBm } which eventually affect the performance of the system. The 

operating parameters of the GA and PSO algorithms are given in Table 1. 

 
 It is well-known that the optimal set of GA and PSO parameters is different for each 

different problem. Thus, the values of GA and PSO parameters given in Table 1 are obtained 

based on set-and-test approach where the convergence speed and quality of obtainable 

solutions are taken into account when finding these set of optimal GA and PSO setting.  For 
GA and PSO algorithm total number of generation gener =300, and given probability of false 

alarm   is calculated dynamically according to threshold value. The whole iteration was 

averaged for 100 times. The values of    and     relatively affects the position of the particles 

on the swarm and  usually assumed to be 2 so that      and      guarantee that the particles 

would fly over the target about half the time [17]. The algorithm is affected by number of 

iterations and swarm size, though there is a trade-off between them. 

Table 1. Optimal set of GA parameters 

Parameter Name GA 

Parameter 

Value Used 

PSO 

Parameter 

value used 

Population size/No. of Particles 50 25 

Mutation rate 0.3 - 

Crossover rate 0.95 - 

Percentage chrom. For reproduction 0.90 - 

No. of Secondary user 25 - 

Leaning Coefficients -         2 

 
However, in experiential research it has been shown that the number of iterations to reach a 

good solution is also problem-dependent.  To confirm the efficiency of the algorithm, low 

SNR condition (SNR < -10 dB) at FC level is provided. The values of the      and      are 

assumed to be constant over the same sensing period  so that it acts as slow fading channel [18]. 
Fig. 4 demonstrates the probability of error of the decision maker in cognitive radio network in 

terms of different values of SNR for PSO- and GA-based methods as well as other traditional 

SDF techniques.  As it can be clearly observed, the best weighting coefficients vector is 
generated by PSO-based method, resulting in minimized probability of error of the system. On 

the other hand, EGC-based spectrum sensing provides the worst error performance resulted 
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from inefficient fusion of the SU measurements in the network. Since the sensing decision 

error characterizes the aggregated miss-detection and false alarm errors, lesser probability of 
sensing decision error means that the evolutionary algorithms, PSO and GA, can provide 

better protection to PUs and higher efficiency of spectrum access by SUs.  

 

 

Fig. 4. Comparison of probability of error versus SNR for different schemes 

Fig. 5 compares the convergence performance of the PSO- and GA-based schemes. Here, the 
probability of error over 100 iterations is evaluated for both methods. As it is seen, to achieve 

a probability of error equal to 0.5×10
-4

, the PSO algorithm requires about 40 iterations while 

same error rate can be obtained after 150 iterations for GA. In addition, after the test duration 

of 300 iterations, the PSO algorithm is converged to probability of error of about 0.2×10
-4

 
while GA achieves 0.45×10

-4
 with the same number of iterations.  
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Fig. 5. Comparison of probability of error over 300 iterations for PSO and GA 

5. Conclusion 

In this paper, PSO and GA evolutionary algorithms have been proposed to optimize the 

weighting coefficient vectors which have been used to fuse final decision signals at the global 

fusion center of a CRN. The proposed evolutionary algorithms have been compared with other 
conventional techniques such as EGC and MRC. Simulation results show that the proposed 

PSO- and GA-based methods perform better detection performance than the conventional 

ones. It was also observed that the PSO-based method outperforms the GA-based method as it 
provides the least possible decision for a given channel condition. This minimal decision error 

is a crucial factor as it allows opportunistic access of PU bands by SU or CR users without 

causing harmful interference to both clients. In addition, the convergence speed of the PSO 

and GA algorithms has been found fast enough to meet real-time requirements of CRN. 
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