• Title/Summary/Keyword: Intelligence Machine

검색결과 1,178건 처리시간 0.027초

소비자 가치기반 디자인 평가 모형: 제품 속성, 인지 속성, 소비자 가치의 3단계 접근 (Design Evaluation Model Based on Consumer Values: Three-step Approach from Product Attributes, Perceived Attributes, to Consumer Values)

  • 김건우;박도형
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.57-76
    • /
    • 2017
  • 최근 정보 기술의 발전 속도가 매우 빠르게 변화하고 있다. 스마트폰과 태블릿 같은 IT 기기에서 이런 변화들이 두드러지고 있다. 이전의 IT 기기들은 기능상의 혁신과 진보를 통해 소비자들을 끌어들였지만, 현재는 IT 제품 상에서 기능상 발전과 혁신은 둔화되었다. 기능상 차별점이 줄어든 시점에서 기업들은 외관과 디자인적 측면에서 차별화를 시도하고 있다. 스마트폰의 외관적 변화를 반영하듯 소비자들도 성능보단 디자인을 스마트폰 구매의 중요 요인으로 삼고 있다. 스마트폰은 패션 아이템의 하나로 자리매김하게 되었고, 스마트폰의 디자인과 외형이 지속적으로 중요해짐에 따라 해당 제품에 대해 소비자들이 느끼는 디자인 가치가 무엇인지도 중요해졌으며, 무엇에 영향을 받는지도 중요해졌다. 소비자들이 느끼는 가치가 중요해짐에 따라 소비자들이 해당제품의 디자인에 대해 평가하는 메커니즘을 밝힐 필요성이 존재하며, 적절한 가치를 전달하기 위해 디자인을 평가할 수 있는 모형이 필요하다. 디자인과 관련한 기존 연구들은 소비자들의 인지와 가치 부분에 초점을 맞추어 연구를 하였지만, 제품 속성 자체에 대한 부분은 고려하지 않은 경향이 있으며, 제품이 갖고 있는 객관적인 속성들에 따라 소비자들의 인지가 변화하는 과정과 최종적으로 느끼는 가치에 대한 메커니즘을 밝힌 연구는 부재한 것으로 나타났다. 따라서 본 연구는 스마트폰 제품이 갖고 있는 객관적 속성인 제품 속성과 객관적 속성을 통해 느끼는 소비자들의 인지, 가치에 대해 평가할 수 있는 메커니즘을 설계하고, 이를 평가할 수 있는 3단계 디자인 평가 모형을 제시하려 한다. 3단계 디자인 평가 모형은 제품 속성, 인지 속성, 소비자 가치까지 모든 단계를 고려한 정량화된 모형으로 스마트폰 분야만이 아닌 사용자경험 분야에 전반적으로 적용 가능할 것으로 기대하며, 기업이 갖고 있는 소비자 데이터와 결합한다면, 특정 소비자층을 겨냥한 제품 생산 및 설계가 가능한 지능형 디자인 가치 평가 모형으로 발전할 수 있을 것으로 예상한다.

Support Vector Regression에서 분리학습을 이용한 고객의 구매액 예측모형 (The Prediction of Purchase Amount of Customers Using Support Vector Regression with Separated Learning Method)

  • 홍태호;김은미
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.213-225
    • /
    • 2010
  • 본 연구에서는 기업의 마케팅 프로모션에 따른 반응고객의 구매액 예측을 위한 방법을 제시하고 SVR의 효과적인 학습방법을 제시하였다. 프로모션에 의한 고객의 구매액을 기반으로 고객을 5등급으로 등급화하고 각 등급 내에서 SVR을 적용하여 고객의 구매액을 예측하였다. 본 연구에서 제안하는 예측된 고객의 등급 내에서 고객 구매액을 예측하는 분리데이터 학습법이 프로모션에 반응한 모든 고객을 대상으로 구매액을 예측하는 전체데이터 학습법보다 높은 예측성과를 보여주었다. 일반적으로 세분화된 고객집단을 하나의 집단으로 보고 동일한 마케팅 전략을 제시하나 본 연구를 통해 구매액에 따라 등급화 된 고객의 등급 내에서 다시 고객의 거래 구매액을 예측하여 동일한 집단 내에서도 차별화된 마케팅 전략을 제시할 수 있는 기반을 제시하였다. 즉 동일한 등급에서도 고객 구매액에 따라 고객의 우선순위를 정할 수 있으며, 이는 마케팅 담당자가 프로모션을 제시할 고객을 선정할 때 유용한 정보로 활용될 수 있다.

다중모형조합기법을 이용한 상품추천시스템 (Product Recommender Systems using Multi-Model Ensemble Techniques)

  • 이연정;김경재
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.39-54
    • /
    • 2013
  • 전자상거래의 폭발적 증가는 소비자에게 더 유리한 많은 구매 선택의 기회를 제공한다. 이러한 상황에서 자신의 구매의사결정에 대한 확신이 부족한 소비자들은 의사결정 절차를 간소화하고 효과적인 의사결정을 위해 추천을 받아들인다. 온라인 상점의 상품추천시스템은 일대일 마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 그러나 사용자의 기호를 제대로 반영하지 못하는 추천시스템은 사용자의 실망과 시간낭비를 발생시킨다. 본 연구에서는 정확한 사용자의 기호 반영을 통한 추천기법의 정교화를 위해 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 본 연구에서 제안하는 모형은 크게 두 개의 단계로 이루어져 있으며, 첫 번째 단계에서는 상품군 별 우량고객 선정 규칙을 도출하기 위해서 로지스틱 회귀분석 모형, 의사결정나무 모형, 인공신경망 모형을 구축한 후 다중모형조합기법인 Bagging과 Bumping의 개념을 이용하여 세 가지 모형의 결과를 조합한다. 두 번째 단계에서는 상품군 별 연관관계에 관한 규칙을 추출하기 위하여 장바구니분석을 활용한다. 상기의 두 단계를 통하여 상품군 별로 구매가능성이 높은 우량고객을 선정하여 그 고객에게 관심을 가질만한 같은 상품군 또는 다른 상품군 내의 다른 상품을 추천하게 된다. 제안하는 상품추천시스템은 실제 운영 중인 온라인 상점인 'I아트샵'의 데이터를 이용하여 프로토타입을 구축하였고 실제 소비자에 대한 적용가능성을 확인하였다. 제안하는 모형의 유용성을 검증하기 위하여 제안 상품추천시스템의 추천과 임의 추천을 통한 추천의 결과를 사용자에게 제시하고 제안된 추천에 대한 만족도를 조사한 후 대응표본 T검정을 수행하였으며, 그 결과 사용자의 만족도를 유의하게 향상시키는 것으로 나타났다.

데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로 (The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction)

  • 천세학
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.239-251
    • /
    • 2019
  • 본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.

비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델 (A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs)

  • 원하람;심재승;안현철
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.127-137
    • /
    • 2019
  • 재범예측은 70년대 이전부터 전문가들에 의해서 꾸준히 연구되어온 분야지만, 최근 재범에 의한 범죄가 꾸준히 증가하면서 재범예측의 중요성이 커지고 있다. 특히 미국과 캐나다에서 재판이나 가석방심사 시 재범 위험 평가 보고서를 결정적인 기준으로 채택하게 된 90년대를 기점으로 재범예측에 관한 연구가 활발해졌으며, 비슷한 시기에 국내에서도 재범요인에 관한 실증적인 연구가 시작되었다. 지금까지 대부분의 재범예측 연구는 재범요인 분석이나 재범예측의 정확성을 높이는 연구에 집중된 경향을 보이고 있다. 그러나 재범 예측에는 비대칭 오류 비용 구조가 있기 때문에 경우에 따라 예측 정확도를 최대화함과 동시에 예측 오분류 비용을 최소화하는 연구도 중요한 의미를 가진다. 일반적으로 재범을 저지르지 않을 사람을 재범을 저지를 것으로 오분류하는 비용은 재범을 저지를 사람을 재범을 저지르지 않을 것으로 오분류하는 비용보다 낮다. 전자는 추가적인 감시 비용만 증가되는 반면, 후자는 범죄 발생에 따른 막대한 사회적, 경제적 비용을 야기하기 때문이다. 이러한 비대칭비용에 따른 비용 경제성을 반영하여, 본 연구에서 비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측모델을 제안한다. 모델의 첫 단계에서 최근 데이터 마이닝 분야에서 높은 성능으로 각광받고 있는 앙상블 기법, XGBoost를 적용하였고, XGBoost의 결과를 로지스틱 회귀 분석(Logistic Regression Analysis), 의사결정나무(Decision Trees), 인공신경망(Artificial Neural Networks), 서포트 벡터 머신(Support Vector Machine)과 같은 다양한 예측 기법과 비교하였다. 다음 단계에서 임계치의 최적화를 통해 FNE(False Negative Error)와 FPE(False Positive Error)의 가중 평균인 전체 오분류 비용을 최소화한다. 이후 모델의 유용성을 검증하기 위해 모델을 실제 재범예측 데이터셋에 적용하여 XGBoost 모델이 다른 비교 모델 보다 우수한 예측 정확도를 보일 뿐 아니라 오분류 비용도 가장 효과적으로 낮춘다는 점을 확인하였다.

RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구 (A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis)

  • 이재성;김재영;강병욱
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.139-161
    • /
    • 2019
  • 전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.

한국어 음소 최소대립쌍의 계량언어학적 연구: 초성 자음을 중심으로 (A quantitative study on the minimal pair of Korean phonemes: Focused on syllable-initial consonants)

  • 정지은
    • 말소리와 음성과학
    • /
    • 제11권1호
    • /
    • pp.29-40
    • /
    • 2019
  • 이 연구의 목적은 한국어 음소의 최소대립쌍 출현 양상에 대해 계량언어학적으로 알아보는 것이다. 최소대립쌍은 한 언어에서 음소의 체계를 세우는 데 중요한 역할을 하고, 기능부담량의 측정에도 중요한 척도가 됨에도 불구하고 아직까지 한국어 음소의 최소대립쌍에 대한 전면적인 연구가 이루어지지 않았다. 이를 위해 "우리말샘"의 표제어 325,715개의 발음을 대상으로 초성 위치에서의 자음 최소대립쌍의 개수를 절대수치와 상대수치로 산출하고, 최소대립쌍을 이루는 두 단어의 품사 관계에 대해서 분석했다. "우리말샘"을 연구의 대상으로 삼은 이유는 최소대립쌍 분석은 기본적으로 사전을 통해서 이루어져야 한다고 판단했고, 한국어 사전 중 규모가 가장 크기 때문이다. 연구 결과는 다음과 같다. 첫째, 최소대립쌍은 총 153가지, 337,135개였다. 개수가 많은 음소 쌍(/ㅅ-ㅈ/, /ㄱ-ㅅ/, /ㄱ-ㅈ/, /ㄱ-ㅂ/, /ㄱ-ㅎ/)은 평음의 비중이 높고, 개수가 적은 음소 쌍(/ㅃ-ㅋ/, /ㄹ-ㅃ/, /ㅉ-ㅋ/, /ㄸ-ㅋ/, /ㅆ-ㅋ/)은 경음의 비중이 높았다. 최소대립쌍 형성에 많은 역할을 담당하는 음소를 개별 음소 단위에서 살펴보면 /ㄱ, ㅅ, ㅈ, ㅂ, ㅊ/ 순으로 높게 나타났는데, 경구개음의 비율이 높게 나타난 것이 특징적이었다. 삼지적 상관속을 이루는 장애음의 최소 대립쌍 관계에도 조음 위치와 조음 방법에 따라 차이가 나타났다. 최소대립쌍의 절대수치와 상대수치의 상관계수는 0.937로 높은 상관관계를 보였다. 둘째, 최소대립쌍을 이루는 두 단어의 품사는 '명사-명사'의 최소대립쌍이 70.25%로 가장 많았고, 그다음으로 '동사-동사' 쌍이 14.77%로 나타나 이 두 유형이 전체 85% 이상을 차지했다. 초성 최소대립쌍의 품사 일치율은 87.91%로 나타나 최소대립쌍은 의미 형태적으로도 비슷한 범주로 묶일 수 있음을 확인할 수 있었다. 이 연구의 결과는 한국어 음소와 관련된 기초 자료로서 국어학, 언어 병리학, 언어 교육, 언어 습득, 음성 공학 등의 다양한 응용 분야에서 유용하게 활용될 수 있을 것이다.

KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용 (KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain)

  • 김동규;이동욱;박장원;오성우;권성준;이인용;최동원
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.191-206
    • /
    • 2022
  • 대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.

전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구 (A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service)

  • 공현정;황유진;박성혁
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.361-381
    • /
    • 2023
  • 기업 부도 예측에 관한 연구는 재무정보를 중심으로 연구되어 왔다. 기업의 재무정보는 분기별로 갱신되기 때문에 실시간으로 기업의 폐업 가능성을 예측하는 데 있어 적시성이 부족하게 되는 문제가 발생한다. 이를 개선하고자 하는 평가 기업에서는 대상 기업의 건전성을 판단하기 위한 재무정보 외의 정보를 활용한 기업의 건전성을 판단하는 방법이 필요하다. 이를 위해 정보 기술의 발달로 기업에 대한 비재무정보 수집이 용이해지면서 기업 부도 예측에 재무정보 외의 추가적인 변수와 여러 가지 방법론을 적용하는 연구가 진행되어 왔으며, 이 중에서도 어떤 변수들이 기업의 부도를 예측하는데 영향을 주는지를 밝히는 것이 중요한 연구 과제가 되었다. 본 연구에서는 전자결제서비스를 이용하는 사업자의 폐업을 예측할 때 비재무정보를 구성하는 전자결제 정보들이 얼마나 영향을 미치는지를 살펴보았으며, 재무정보와 비재무정보 결합에 따른 폐업 예측 정확도 차이를 살펴보았다. 구체적으로, 재무정보 모형과 비재무정보 모형, 그리고 이를 결합한 모형으로 구성된 세 가지 연구 모형을 설계하였으며 Multi Layer Perceptron(MLP) 알고리즘을 포함한 여섯 가지 알고리즘으로 폐업 예측 정확도를 확인하였다. 재무정보와 비재무정보를 결합한 모형이 가장 높은 예측 정확도를 보였으며, 그 다음으로는 비재무정보 모형, 재무정보 모형의 순서로 예측 정확도가 확인되었다. 알고리즘별 폐업 예측 정확도는 여섯 가지의 알고리즘 중 XGBoost가 가장 높은 예측 정확도를 보였다. 사업자의 폐업 예측에 활용된 전체 87개의 변수를 대상으로 상대적 중요도를 살펴본 결과 폐업 예측에 중요하게 영향을 미친 변수는 상위 20개 중 70% 이상이 비재무정보인 것으로 확인되었다. 이를 통해 비재무정보의 전자결제 정보가 사업자의 폐업을 예측하는 중요한 변수임을 확인하였으며, 비재무 정보가 재무정보의 대안적 정보로서 활용할 수 있는 가능성 역시 살펴볼 수 있었다. 본 연구를 기반으로 사업자의 폐업을 예측할 수 있는 정보로서 비재무정보의 수집과 활용에 대한 중요성을 인식하고 기업의 의사결정에 활용할 수 있는 방안에 대해서도 다루었다.

설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석 (Analysis of the impact of mathematics education research using explainable AI)

  • 오세준
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권3호
    • /
    • pp.435-455
    • /
    • 2023
  • 본 연구는 수학 교육 분야에서 중요한 영향을 미치는 논문을 판별하고 분석하기 위한 설명가능한 인공지능(XAI) 모델을 개발하였다. 29개 국내외 수학교육 학술지의 논문 메타정보를 활용하여 수학교육 학술연구 네트워크를 구축하였다. 구축된 네트워크는 '논문과 다른 논문의 인용 네트워크', '논문과 저자 네트워크', '논문과 학술지 네트워크', '공동 저자 네트워크', '저자와 소속기관 네트워크' 등 총 5개의 세부 네트워크로 구성되었다. 랜덤포레스트 기계학습 모델을 사용하여 네트워크 내의 개별 논문의 영향력을 평가하였으며, SHAP을 이용해 영향력 있는 논문의 판별 기준을 분석하였다. '논문 네트워크 PageRank', '논문당 인용횟수의 변화량', '총 인용횟수', '저자의 h-index 변화량', '학술지의 논문당 인용횟수' 등이 중요한 판별 요인으로 나타났다. 국내와 국외 수학교육 연구의 판별 패턴을 비교 분석한 결과, 국내 연구에서는 '공동 저자 네트워크 PageRank'의 중요성이 도드라졌다. 본 연구의 XAI 모델은 논문의 영향력 판별 도구로써 연구자에게 논문 작성 시 전략적인 방향성을 제공할 수 있게 해준다. 논문 네트워크 확장, 학술대회 발표, 공동 저술 활동을 통한 저자 네트워크 활성화 등이 논문의 영향력 증진에 크게 기여한다는 결과를 얻었다. 이를 통해 연구자는 학계에서 자신의 연구가 어떠한 평가 기준에 따라 어떻게 인식되고 있는지, 그리고 그 평가에 기여하는 주요 요인이 무엇인지를 명확히 파악할 수 있을 것이다. 본 연구는 설명가능한 인공지능을 활용하여 전통적으로 많은 시간과 비용이 필요하던 수학교육 논문의 영향력 평가 방식을 혁신하였다. 이 방법은 수학교육 연구 뿐만 아니라 다른 학문 분야에서도 활용될 수 있으며, 연구활동의 효율성과 효과성을 향상시킬 것으로 기대된다.