• Title/Summary/Keyword: Integrity Station

Search Result 88, Processing Time 0.022 seconds

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Korea Pathfinder Lunar Orbiter Flight Dynamics Simulation and Rehearsal Results for Its Operational Readiness Checkout

  • Song, Young-Joo;Bae, Jonghee;Hong, SeungBum;Bang, Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 기능실에 대한 무선 센서 네트워크 성능 분석)

  • An, Tea-Ki;Shin, Jeong-Ryol;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1701-1708
    • /
    • 2011
  • A typical day in the subway transportation is used by hundreds of thousands are also concerned about the safety of the various workrooms with high underground fire or other less than in the subway users could be damaging even to be raised and there. In 2010, in fact, room air through vents in the fire because smoke and toxic gas accident victims, and train service suspended until such cases are often reported. In response to these incidents in subway stations, even if the latest IT technology, wireless sensor network technology and intelligent video surveillance technology by integrating fire and structural integrity, such as a comprehensive integrated surveillance system to monitor the development of intelligent urban transit system and are under study. In this study, prior to the application of the monitoring system into the field stations, authors carried out the ZigBee-based wireless sensor networks performance analyzation in the Chungmuro station. The test results at a communications room and ventilation room of the station are summarized and analyzed.

  • PDF

Performance Verification of Psudolite-based Augmentation System Using RF signal logger and broadcaster (RF 신호 수집/방송 장치를 활용한 의사위성 기반 광역보정시스템의 후처리 성능 검증)

  • Han, Deok-Hwa;Yun, Ho;Kim, Chong-Won;Kim, O-Jong;Kee, Chang-Don
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.391-397
    • /
    • 2014
  • Wide Area Differential GNSS(WA-DGNSS) was developed in order to improve the accuracy and integrity performance of GNSS. In this paper, overall structure of Pseudolite-Based Augmentation System(PBAS) and experimental methods which enables the post-processing test with commercial receiver will be described. For generating augmenting message, GPS measurement collected from five NDGPS reference stations were processed by reference station S/W and master station S/W. The accuracy of augmenting message was tested by comparing SP3, IONEX data. In the test, RF signal of user was collected and correction data were generated. After that, RF signal was broadcasted with pseudolite signal. Test was conducted using three commercial receiver and the performance was compared with MSAS and standalone user. From the position output of each receiver, it was shown that improved position was obtained by applying augmenting message.

A New Approach for Practical Classification of Herbicide and for Effective Use by Two-dimensional Ordination Analysis (Two-Dimensional Ordination 분석법에 의한 제초제살초 Spectrum 분류와 효과적인 사용법)

  • Kim Soon Chul
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.147-159
    • /
    • 1983
  • In general, herbicides have been classified according to selectivity, mobility. time of application, methods of application, mode of action and chemical property and structure. However, there was no generally accepted classification system for practical use in the field. The primary processes affected by the majority of herbicides are the growth process through cell elongation and/or cell division, the photosynthetic process specifically the light reaction, the oxidative phosphorylation and the integrity of the membrane systems. The usual approach in the study of the mechanism by which herbicides kill or inhibit the growth of plants is to initially determine the morphological phototoxicity systems, The mechanism by which a herbicide kills a plant or suppresses its development is actually the resultant effect of primary and secondary(or side) effects. In most instances, the death of the plant is due to the secondary effects. To induce the desired response, a herbicide must be able to gain entry into the plants and once inside, to be transported within the plant to its site(s) of activity in concentrations great enough. Obstacles to the entry and movement of herbicides in plants are generally classified by leaf and soil obstacles, translocation obstacles and biochemical obstacles, and these obstacles are also strongly influenced by plant species and by environmental factors such as light, temperature, rainfall and relative humidity. And hence, in most instances, results obtained from laboratory or greenhous vary from those of field experiment. Author attempted to classify herbicides from the field experiment using the two-dimensional ordination analysis to obtain practical information for selecting effective herbicides or to choose effective herbicide combinations for increasing herbicidal efficacy or reducing the chemical cost. Based on this two-dimensional diagram, desired herbicides or combinations were selected and further investigated for the interaction effects whether these combinations are synergistic, additive or antagonistic. From the results, it was concluded that these new approach could possibly be give more comprehensive informations about effective use of herbicide than any other systems.

  • PDF

A Study to Solve the Discontinuity of Network RTK Correction for Vehicle (이동형 항체를 위한 Network RTK 보정정보 불연속 해소 방안)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.78-79
    • /
    • 2012
  • To improve moving vehicles' accuracy, one-way Network RTK which guarantees high accuracy and integrity regardless the distance from rovers to Reference Station(RS) is being considered. Correction of one-way Network RTK can be generated only after constructing RS network surrounding the rover, therefore a correction discontinuity is inevitably occurred when the RS set has been changed. The discontinuity is not eliminated by the DD(Double Difference) method, and our simulation shows that it causes 13cm(horizontal) and 48cm(vertical) position error. We suggest three solutions to reduce this discontinuity, which are identification of master RS with neighbor networks, duplication of communication module to receive corrections from other network, and ambiguity levelling between neighbor networks.

  • PDF

Data Quality Analysis of Korean GPS Reference Stations Using Comprehensive Quality Check Algorithm (종합적 품질평가 기법을 이용한 국내 GPS 상시관측소의 데이터 품질 분석)

  • Kim, Minchan;Lee, Jiyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.689-699
    • /
    • 2013
  • During extreme ionospheric storms, anomalous ionospheric delays and gradients could cause potential integrity threats to users of GNSS (Global Navigation Satellite System) augmentation systems. GNSS augmentation ground facilities must monitor these ionospheric anomalies defined by a threat model and alarm the users of safely-of-life applications within time-to-alerts. Because the ionospheric anomaly threat model is developed using data collected from GNSS reference stations, the use of poor-quality data can degrade the performance of the threat model. As the total number of stations increases, the number of station with poor GNSS data quality also increases. This paper analyzes the quality of data collected from Korean GPS reference stations using comprehensive GNSS data quality check algorithms. The results show that the range of good and poor qualities varies noticeably for each quality parameter. Especially erroneous ionospheric delay and gradients estimates are produced due to poor quality data. The results obtained in this study should be a basis for determining GPS data quality criteria in the development of ionospheric threat models.

Analysis of KASS Flight Test Requirements using The EGNOS (EGNOS 사례를 활용한 KASS 비행시험 요구 사항 분석)

  • Son, Sung-Jin;Hong, Gyo-young;Hong, Woon Ki;Kim, Koon-Tack
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.579-584
    • /
    • 2017
  • SBAS is a satellite based navigation correction system that provides correction information and integrity information of GNSS signal through geostationary satellite based on analysis of GNSS signal in ground station. KASS, a Korean SBAS, is aiming at the APV-1 class SoL service in 2022. Sufficient ground and flight tests must be performed in advance to provide SoL services. However, since KASS, the Korean SBAS, has not yet been added in Korea, specific detailed evaluation items are not presented. EGNOS, which is expected to be the most compatible with KASS and is being serviced after its development, has already been evaluated. In this paper, we analyze the regulations applied to EGNOS construction and analyze the criteria of ground and flight test evaluation items required for flight testing, which is expected to be referenced to the flight inspection process in the future.

An Hierarchical Key Management Scheme for Assure Data Integrity in Wireless Sensor Network (WSN에서 데이터 무결성을 보장하는 계층적인 키 관리 기법)

  • Jeong, Yoon-Su;Hwang, Yoon-Cheol;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.281-292
    • /
    • 2008
  • A main application of sensor networks are to monitor and to send information about a possibly hostile environment to a powerful base station connected to a wired network. To conserve power from each sensor, intermediate network nodes should aggregate results from individual sensors. However, it can make it that a single compromised sensor can render the network useless, or worse, mislead the operator into trusting a false reading. In this paper, we propose a protocol to give us a key aggregation mechanism that intermediate network nodes could aggregate data more safely. The proposed protocol is more helpful at multi-tier network architecture in secure sessions established between sensor nodes and gateways. From simulation study, we compare the amount of the energy consumption overhead, the time of key transmission and the ratio of of key process between the proposed method and LHA-SP. The simulation result of proposed protocol is low 3.5% a lord of energy consumption than LHA-SP, the time of key transmission and the ration of key process is get improved result of each 0.3% and 0.6% than LHA-SP.

A Validated Solution for the Threat of Ionosphere Spatial Anomalies to Ground Based Augmentation System Users

  • Pullen, Sam;Lee, Ji-Yun;Datta-Barua, Seebany;Park, Young-Shin;Zhang, Godwin;Enge, Per
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.9-14
    • /
    • 2006
  • This paper develops a complete methodology for the mitigation of ionosphere spatial anomalies by GBAS systems fielded in the Conterminous U.S. (CONUS). It defines an ionosphere anomaly threat model based on validated observations of unusual ionosphere events in CONUS impacting GBAS sites in the form of a linear ‘wave front’ of constant slope and velocity. It then develops a simulation-based methodology for selecting the worst-case ionosphere wave front impact impacting two satellites simultaneously for a given GBAS site and satellite geometry, taking into account the mitigating effects of code-carrier divergence monitoring within the GBAS ground station. The resulting maximum ionosphere error in vertical position (MIEV) is calculated and compared to a unique vertical alert limit, or $VAL_{H2,I}$, that applies to the special situation of worst-case ionosphere gradients. If MIEV exceeds $VAL_{H2,I}$ for one or more otherwise-usable subset geometries (i.e., geometries for which the 'normal' vertical protection level, or $VPL_{H0}$, is less than the 'normal' VAL), the broadcast ${\sigma}_{pr_{-}gnd}$ and/or ${\sigma}_{vig}$ must be increased such that all such potentially-threatening geometries have VPL$_{H0}$ > VAL and thus become unavailable. In addition to surveying all aspects of the methods used to generate the required ${\sigma}_{pr_{-}gnd}$ and ${\sigma}_{vig}$ inflation factors for CONUS GBAS sites, related methods for deriving similar results for GBAS sites outside CONUS are suggested.

  • PDF