• Title/Summary/Keyword: Integrity Constraints

Search Result 70, Processing Time 0.022 seconds

Authentication Protocol Using Hamming Distance for Mobile Ad-hoc Network (모바일 Ad-hoc 네트워크에서 Hamming Distance를 이용한 인증프로토콜)

  • Lee, Seok-Lae;Song, Joo-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • Mobile Ad-hoc networks have various implementation constraints such as infrastructure-free, no trusted authority, node mobility, and the limited power and small memory of mobile device. And just like wired networks, various security issues such as authentication, confidentiality, integrity, non-repudiation, access control, availability and so on have been arisen in mobile Ad-hoc networks. But we focus on authentication of these security issues because it is quitely affected by the characteristics of networks. In this paper, we propose the authentication protocol that can limit the size of certificate repository as $log_2N$ and assures to make a trusted certificate path from one node to another, adopting the concept of Hamming distance. Particularly, our protocol can construct a trusted certificate path in spite of decreasing or increasing the number of nodes in mobile Ad-hoc network.

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

Low Power Security Architecture for the Internet of Things (사물인터넷을 위한 저전력 보안 아키텍쳐)

  • Yun, Sun-woo;Park, Na-eun;Lee, Il-gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.199-201
    • /
    • 2021
  • The Internet of Things (IoT) is a technology that can organically connect people and things without time and space constraints by using communication network technology and sensors, and transmit and receive data in real time. The IoT used in all industrial fields has limitations in terms of storage allocation, such as device size, memory capacity, and data transmission performance, so it is important to manage power consumption to effectively utilize the limited battery capacity. In the prior research, there is a problem in that security is deteriorated instead of improving power efficiency by lightening the security algorithm of the encryption module. In this study, we proposes a low-power security architecture that can utilize high-performance security algorithms in the IoT environment. This can provide high security and power efficiency by using relatively complex security modules in low-power environments by executing security modules only when threat detection is required based on inspection results.

  • PDF

Structural Design of SAR Control Units for Small Satellites Based on Critical Strain Theory (임계변형률 이론에 기반한 초소형 위성용 SAR 제어부 전장품 구조설계)

  • Jeongki Kim;Bonggeon Chae;Seunghun Lee;Hyunung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-20
    • /
    • 2024
  • The application of reinforcement design to ensure the structural safety of electronics in small satellites is limited by the spatial constraints of the satellite structure during launch vibrations. Additionally, a reliable evaluation approach is needed for mounting highly integrated devices that are susceptible to fatigue failure. Although the Steinberg fatigue failure theory has been used to assess the structural integrity of electronic devices, recent studies have highlighted its theoretical limitations. In this paper, we propose a structural methodology based on the critical strain theory to design the digital control unit (DCU) of the X-band SAR payload component for the small SAR technology experimental project (S-STEP), a small satellite constellation. To validate the design, we conducted modal and random analyses using simplified modeling techniques. Based on our methodology, we ultimately demonstrated the structural safety of the electronics through analysis results, safety margin derivation, and functional tests conducted both before and after the launch test.

Presenting an advanced component-based method to investigate flexural behavior and optimize the end-plate connection cost

  • Ali Sadeghi;Mohammad Reza Sohrabi;Seyed Morteza Kazemi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.31-43
    • /
    • 2024
  • A very widely used analytical method (mathematical model), mentioned in Eurocode 3, to examine the connections' bending behavior is the component-based method that has certain weak points shown in the plastic behavior part of the moment-rotation curves. In the component method available in Eurocode 3, for simplicity, the effect of strain hardening is omitted, and the bending behavior of the connection is modeled with the help of a two-line diagram. To make the component method more efficient and reliable, this research proposed its advanced version, wherein the plastic part of the diagram was developed beyond the guidelines of the mentioned Regulation, implemented to connect the end plate, and verified with the moment-rotation curves found from the laboratory model and the finite element method in ABAQUS. The findings indicated that the advanced component method (the method developed in this research) could predict the plastic part of the moment-rotation curve as well as the conventional component-based method in Eurocode 3. The comparison between the laboratory model and the outputs of the conventional and advanced component methods, as well as the outputs of the finite elements approach using ABAQUS, revealed a different percentage in the ultimate moment for bolt-extended end-plate connections. Specifically, the difference percentages were -31.56%, 2.46%, and 9.84%, respectively. Another aim of this research was to determine the optimal dimensions of the end plate joint to reduce costs without letting the mechanical constraints related to the bending moment and the resulting initial stiffness, are not compromised as well as the safety and integrity of the connection. In this research, the thickness and dimensions of the end plate and the location and diameter of the bolts were the design variables, which were optimized using Particle Swarm Optimization (PSO), Snake Optimization (SO), and Teaching Learning-Based Optimization (TLBO) to minimization the connection cost of the end plate connection. According to the results, the TLBO method yielded better solutions than others, reducing the connection costs from 43.97 to 17.45€ (60.3%), which shows the method's proper efficiency.

Study on Improvement of Weil Pairing IBE for Secret Document Distribution (기밀문서유통을 위한 Weil Pairing IBE 개선 연구)

  • Choi, Cheong-Hyeon
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.59-71
    • /
    • 2012
  • PKI-based public key scheme is outstanding in terms of authenticity and privacy. Nevertheless its application brings big burden due to the certificate/key management. It is difficult to apply it to limited computing devices in WSN because of its high encryption complexity. The Bilinear Pairing emerged from the original IBE to eliminate the certificate, is a future significant cryptosystem as based on the DDH(Decisional DH) algorithm which is significant in terms of computation and secure enough for authentication, as well as secure and faster. The practical EC Weil Pairing presents that its encryption algorithm is simple and it satisfies IND/NM security constraints against CCA. The Random Oracle Model based IBE PKG is appropriate to the structure of our target system with one secret file server in the operational perspective. Our work proposes modification of the Weil Pairing as proper to the closed network for secret file distribution[2]. First we proposed the improved one computing both encryption and message/user authentication as fast as O(DES) level, in which our scheme satisfies privacy, authenticity and integrity. Secondly as using the public key ID as effective as PKI, our improved IBE variant reduces the key exposure risk.

A Classification Model Supporting Dynamic Features of Product Databases (상품 데이터베이스의 동적 특성을 지원하는 분류 모형)

  • Kim Dongkyu;Lee Sang-goo;Choi Dong-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.165-178
    • /
    • 2005
  • A product classification scheme is the foundation on which product databases are designed, and plays a central role in almost all aspects of management and use of product information. It needs to meet diverse user views to support efficient and convenient use of product information. It needs to be changed and evolved very often without breaking consistency in the cases of introduction of new products, extinction of existing products, class reorganization, and class specialization. It also needs to be merged and mapped with other classification schemes without information loss when B2B transactions occur. For these requirements, a classification scheme should be so dynamic that it takes in them within right time and cost. The existing classification schemes widely used today such as UNSPSC and eCl@ss, however, have a lot of limitations to meet these requirements for dynamic features of classification. Product information implies a plenty of semantics such as class attributes like material, time, place, etc., and integrity constraints. In this Paper, we analyze the dynamic features of product databases and the limitation of existing code based classification schemes, and describe the semantic classification model proposed in [1], which satisfies the requirements for dynamic features of product databases. It provides a means to explicitly and formally express more semantics for product classes and organizes class relationships into a graph.

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.

Reliability-Based Design Optimization for a Vertical-Type Breakwater with an Emphasis on Sliding, Overturn, and Collapse Failure (직립식 방파제 신뢰성 기반 최적 설계: 활동, 전도, 지반 훼손으로 인한 붕괴 파괴를 중심으로)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.50-60
    • /
    • 2024
  • To promote the application of reliability-based design within the Korean coastal engineering community, the author conducted reliability analyses and optimized the design of a vertical-type breakwater, considering multiple limit states in the seas off of Pusan and Gunsan - two representative ports in Korea. In this process, rather than relying on design waves of a specific return period, the author intentionally avoided such constraints. Instead, the author characterized the uncertainties associated with wave force, lift force, and overturning moment - key factors significantly influencing the integrity of a vertical-type breakwater. This characterization was achieved by employing a probabilistic model derived from the frequency analysis results of long-term in-situ wave data. The limit state of the vertical-type breakwater encompassed sliding, overturning, and collapse failure, with the close interrelation between wave force, lift force, and moment described using the Nataf joint probability distribution. Simulation results indicate, as expected, that considering only sliding failure underestimates the failure probability. Furthermore, it was shown that the failure probability of vertical-type breakwaters cannot be consistently secured using design waves with a specific return period. In contrast, breakwaters optimally designed to meet the reliability index requirement of 𝛽-3.5 to 4 consistently achieve a consistent failure probability across all sea areas.

A Semantic Classification Model for e-Catalogs (전자 카탈로그를 위한 의미적 분류 모형)

  • Kim Dongkyu;Lee Sang-goo;Chun Jonghoon;Choi Dong-Hoon
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.102-116
    • /
    • 2006
  • Electronic catalogs (or e-catalogs) hold information about the goods and services offered or requested by the participants, and consequently, form the basis of an e-commerce transaction. Catalog management is complicated by a number of factors and product classification is at the core of these issues. Classification hierarchy is used for spend analysis, custom3 regulation, and product identification. Classification is the foundation on which product databases are designed, and plays a central role in almost all aspects of management and use of product information. However, product classification has received little formal treatment in terms of underlying model, operations, and semantics. We believe that the lack of a logical model for classification Introduces a number of problems not only for the classification itself but also for the product database in general. It needs to meet diverse user views to support efficient and convenient use of product information. It needs to be changed and evolved very often without breaking consistency in the cases of introduction of new products, extinction of existing products, class reorganization, and class specialization. It also needs to be merged and mapped with other classification schemes without information loss when B2B transactions occur. For these requirements, a classification scheme should be so dynamic that it takes in them within right time and cost. The existing classification schemes widely used today such as UNSPSC and eClass, however, have a lot of limitations to meet these requirements for dynamic features of classification. In this paper, we try to understand what it means to classify products and present how best to represent classification schemes so as to capture the semantics behind the classifications and facilitate mappings between them. Product information implies a plenty of semantics such as class attributes like material, time, place, etc., and integrity constraints. In this paper, we analyze the dynamic features of product databases and the limitation of existing code based classification schemes. And describe the semantic classification model, which satisfies the requirements for dynamic features oi product databases. It provides a means to explicitly and formally express more semantics for product classes and organizes class relationships into a graph. We believe the model proposed in this paper satisfies the requirements and challenges that have been raised by previous works.