• 제목/요약/키워드: Integrated wastewater treatment management system

검색결과 17건 처리시간 0.027초

FAULT DETECTION, MONITORING AND DIAGNOSIS OF SEQUENCING BATCH REACTOR FOR INTEGRATED WASTEWATER TREATMENT MANAGEMENT SYSTEM

  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

소규모 현장 오수처리시설의 통합관리를 위한 모니터링 시스템 설계 및 운영 프로그램 개발 (Design of Monitoring System for Integrated Management of On-site Wastewater Treatment Plants and Development of its Operation Program)

  • 조영현;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.137-140
    • /
    • 2002
  • The monitoring system for integrated management of on-site wastewater treatment plants(biofilter) was designed and its operation program was developed. In design process, the research on monitoring parameters which will be able to represent condition and operation of the pilot plants was accomplished, and these parameters came to reveal with ORP(Oxidation-Reduction Potential), water level, pump and power on/off. Proposed monitoring system is composed with measurement, control, communication and display device, and PCB(Prototype Circuit Boards) and microcontroller (PIC16F877) technique are applied to its design of control device for performing specific function. also, The operation program of PC setup is developed in order to provide a convenience to the manager.

  • PDF

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • 한국습지학회지
    • /
    • 제9권1호
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

매립지내 환경에너지단지의 무방류 시스템 구축방안 (Construction Method of Zero Discharge System for Environmental Energy Complex in Landfill)

  • 천승규
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.581-590
    • /
    • 2013
  • A research was performed for zero discharge system of waste water which is produced from energy recovery process of waste and biomass. Leachate and all kinds of waste water should be separated and integrated into three categories in addition to converting existing leachate treatment facility into waste water treatment facility as well as introducing a management system of reverse osmosis membrane facility and bioreactor landfill. Following these conditions to better water treatment process, it was likely to produce over 3,000 tons of low-grade recycling water and 2,000 tons of high-grade recycling water per day when zero discharge system of waste water is applied starting from 2016. Economical efficiency was also surveyed in total treatment fee. Present system costs 18,129 million won per year, and suggested zero discharge system would cost 15,789 million won per year.

하수도 시설 관리 시스템의 개발 및 적용 (Development and Application of Sewer Facility Management System)

  • 김준현;한영한
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.279-285
    • /
    • 1999
  • An integrated sewer management system was developed for the analysis of sewer flow and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue in order to construct user-friendly management system. The developed system was applied to a residential area in Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of sewer flow was implemented using RUNOFF, EXTRAN, TRANSPORT in SWMM. This system is now in the process of connection to the management system of watershed and surface environment in order to develope an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles, it could serve as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

웹 기반의 공간정보예측시스템을 이용한 통합적 하수도 관리 시스템의 개발 및 적용 (An Integrated Sewer Management System using Web Based Predictive Spatial Information System)

  • 김준현;한영한
    • 환경영향평가
    • /
    • 제10권1호
    • /
    • pp.73-83
    • /
    • 2001
  • Web based integrated sewer management system was developed for the analysis of sewer flow and for the optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue in order to construct user-friendly information management system. The developed system was applied to the residential area in Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of the developed system, and the modeling of sewer flow was implemented using RUNOFF, EXTRAN, TRANSPORT in SWMM. This system is now in the process of connection to the management system of stormwater, surface and subsurface environment in order to develop an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer network and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles, it could serve as a tool not only for the optimal management, but also for the decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

지진발생 대응을 위한 상하수도시설 관리 및 기술 현황에 대한 고찰 (A review on recent advances in water and wastewater treatment facilities management for earthquake disaster response)

  • 박정수;최준석;김극태;윤영한;박재형
    • 상하수도학회지
    • /
    • 제34권1호
    • /
    • pp.9-21
    • /
    • 2020
  • The proper operation and safety management of water and wastewater treatment systems are essential for providing stable water service to the public. However, various natural disasters including floods, large storms, volcano eruptions and earthquakes threaten public water services by causing serious damage to water and wastewater treatment plants and pipeline systems. Korea is known as a country that is relatively safe from earthquakes, but the recent increase in the frequency of earthquakes has increased the need for a proper earthquake management system. Interest in research and the establishment of legal regulations has increased, especially since the large earthquake in Gyeongju in 2016. Currently, earthquakes in Korea are managed by legal regulations and guidelines integrated with other disasters such as floods and large storms. The legal system has long been controlled and relatively well managed, but technical research has made limited progress since it was considered in the past that Korea is safe from earthquake damage. Various technologies, including seismic design and earthquake forecasting, are required to minimize possible damages from earthquakes, so proper research is essential. This paper reviews the current state of technology development and legal management systems to prevent damages and restore water and wastewater treatment systems after earthquakes in Korea and other countries. High technologies such as unmanned aerial vehicles, wireless networks and real-time monitoring systems are already being applied to water and wastewater treatment processes, and to further establish the optimal system for earthquake response in water and wastewater treatment facilities, continuous research in connection with the Fourth Industrial Revolution, including information and communications technologies, is essential.

하수처리수의 농업용수 재이용 정보 관리시스템 개발 (Development of GIS Information System for Agricultural Reuse of Effluent)

  • 김해도;이광야;정광근
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.535-539
    • /
    • 2006
  • GIS-based integrated management system was developed for the treated wastewater to be reused as agricultural water. The major scopes of this research includes developing different types of system such as connecting data of wastewater treatment plants to data of hydraulic structures and paddy field ; separating spatial data into the watershed boundary and the agricultural water boundary ; and estimating applicable site for reuse. This system can enable to provide more scientific support to manage information of effluent and agricultural data utilizing GIS techniques.

  • PDF

수자원 보전을 위한 유역통합관리 방안에 관한 연구(II) - 오십천 수계의 수질모델링 및 수질 예측 - (Study in the integrated watershade management for conservation of water resources (II) - Water quality modeling and simulation of Oship stream -)

  • 허인량;정의호;권재혁
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.61-69
    • /
    • 2002
  • Oship stream is located nearby south eastern coasts. This study was performed to find out waters quality modeling and then to predict water quality of Oship stream. Based on survey data, BOD, T-N, T-P calibration and verification result were in good agreement with measured value within mean coefficient variance(MSE) value, which were 13.9%, 9.0%, 26.5% and 19.5%, 12.0%, 16.5%, respectively. Sectional water quality predictions of the main stream of Oship stream are executed on the basis of the following cases 1) with sewage treatment of Dogye-eup 2) reduction of mine wastewater treatment of 80% in th basin. As a result, BOD, T-P improvement rates at down stream of Oship stream, case 1) were appeared 12.2%, 22.2%, case 2) maximum sulfate ion and conductivity reduction removal rate of Oship stream were 58%, 68%. The main pollution sources of Oship-stream were almost domestic wastewater and mine wastewater discharged from Dogye-eup which located in uppers stream. The large effects will appear after the construction of Dogye sewage water treatment plant which remove the organic matter and nutrients in these sewage water. The waste water from mine can not easily to treat for characteristics of effluence and economic problems. However, to achieve the goal of water quality in Oship-stream water system, treatments of those are necessary.

불확실성을 고려한 통합유역모델링 (Integrated Watershed Modeling Under Uncertainty)

  • 함종화;윤춘경;다니엘 라욱스
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.