• 제목/요약/키워드: Integrated substrates

검색결과 122건 처리시간 0.035초

Surface Topographic Effect on Mesenchymal Stem Cells in Tissue Engineering

  • Yun, Young-Shik;Kang, Eun-Hye;Yun, In Sik;Kim, Yong Oock;Yeo, Jong-Souk
    • Journal of International Society for Simulation Surgery
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In the field of tissue engineering, researches have been actively conducted to regulate stem cell fate by understanding the interaction between cell and materials. This approach is expected as a promising therapeutic method in the future medicine by utilizing differentiation of stem cells into desired cells or tissues using biomaterial. For this regenerative medicine, there exist lots of attempts to construct optimized structures of various shapes and sizes that can regulate the stem cell fate. In this review, we will empathize the topographic effect as stem cell niche on the mesenchymal stem cell (MSC) response (cell attachment, proliferation, and differentiation) according to the shape and size of the structure of the substrates, and comprehensively analyze the importance and the effect of shape and size of the surface topography.

Precise pressure sensor using piezoelectric nanocomposites integrated directly in organic field-effect transistors

  • Tien, Nguyen Thanh;Trung, Tran Quang;Seol, Young-Gug;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.500-500
    • /
    • 2011
  • With recent advances in flexible and stretchable electronics, the development of physically responsive field-effect transistors (physi-FETs) that are easily integrated with transformable substrates may enable the omnipresence of physical sensing devices in electronic gadgets. However, physical stimuli typically induce whole sensing physi-FET devices under global influences that also cause changes in the parameters of FET transducers, such as channel mobility and dielectric capacitance that prevent proper interpretations of response in sensing materials. Extended-gate structures with isolated stimuli have been used recently in physi-FETs to demonstrate performances of sensing materials only. However, such approaches are limited to prototype researches since isolated stimuli rarely occur in real-life applications. In this report, we theoretically and experimentally demonstrated that integrating piezoelectric nanocomposites directly into flexible organic FETs (OFETs) as gate dielectrics provides a general research direction to physi-FETs with a simple device structure and the capability of precisely investigating functional materials. Measurements with static stimulations, which cannot be performed in conventional systems, exhibited giant-positive d33 values of nanocomposites of barium titanate (BT) NPs and poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)).

  • PDF

무전지 SAW 기반 마이크로 통합센서 및 무선 측정기술 개발 (Development of Batteryless SAW-based Integrated Microsensor and Wireless Measurement Technique)

  • 오해관;김태현;왕웬;양상식;이기근
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1430-1435
    • /
    • 2007
  • We developed a 440MHz surface acoustic wave (SAW) microsensor integrated with pressure-temperature sensors and ID tag. Two piezoelectric substrates were bonded, in which ${\sim}150\;{\mu}m$ cavity was structured. Four sides were completely sealed by JSR photoresist (PR). Pressure sensor was placed on the top substrate, whereas ill tag and temperature sensor were placed on the bottom substrate. Using network analyzer, the developed microsensor was wirelessly tested. Sharp reflection peaks with high S/N ratio, small signal attenuation, and small spurious peaks were observed. All the reflection peaks were well matched with the coupling of mode (COM) simulation results. With a 10mW RF power from the network analyzer, a ${\sim}1$ meter readout distance was observed. Eight sharp ON reflection peaks were observed for ID tag. Temperature sensor was characterized from $20^{\circ}C$ to $200^{\circ}C$. A large phase shift per unit temperature change was observed. The evaluated sensitivity was ${\sim}10^{\circ}/^{\circ}C$.

이종 집적 유연 반도체 시스템 구현을 위한 무기물 박막소재의 전사 방법 (Transfer Methods of Inorganic Thin Film Materials for Heterogeneously- Integration Flexible Semiconductor System)

  • 주경현;김정현;박상윤;김강현;이한얼
    • 한국전기전자재료학회논문지
    • /
    • 제37권3호
    • /
    • pp.241-252
    • /
    • 2024
  • With the recent development of emerging technologies, information acquisition and delivery between users has been actively conducted, and inorganic thin film transfer technology that effectively transfers various materials and devices is being studied to develop flexible electronic devices accordingly. This is aimed at innovative structural changes and functional improvement of electronic devices in the era of the Internet of Things (IoT). In particular, advanced technologies such as microLEDs are used to realize high-resolution flexible displays, and the possibility of heterogeneous integrated technologies can be presented by precisely transferring materials to substrates through various transfer process. This paper introduced physical, chemical, and self-assembly transfer methods based on inorganic thin film materials to implement heterogeneous integrated flexible semiconductor systems and introduces the results of application studies of semiconductor devices obtained through different transfer technologies. These studies are expected to bring about innovative changes in the field of smart devices, medical technology, and user interfaces in the future.

집적광학용 격자구조의 제작과 응용 (Fabrication of Grating Structures and Their Applications in Integrated Optics)

  • 이성재;송재원;신상영
    • 대한전자공학회논문지
    • /
    • 제21권3호
    • /
    • pp.39-45
    • /
    • 1984
  • Submicron gratings are fabricated holographically on thin film single mode and multimode waveguides. Thin film waveguides are made by spin-coating polyurethane solution on the substrates of microscope slide glass and Corning 7059 glass. In order to characterize thin film waveguides, the refract사e index and the thickness of thin films are measured by using the m-line spectroscopy. The fabricated gratings are tested as a grating coupler, a mode converter, and a beam splitter. Also chirped gratings are fabricated to observe beam expansion phenomena and thus the possibility of the wavelength demultiplexing.

  • PDF

Single-Domain-Like Graphene with ZnO-Stitching by Defect-Selective Atomic Layer Deposition

  • 김홍범;박경선;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.329-329
    • /
    • 2016
  • Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

  • PDF

다층 글라스세라믹 유전체의 결정화특성에 관한 연구 (Properties of Multilayer Glass-Ceramic Dielectrics)

  • 이헌수;손명모;박희찬
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.981-988
    • /
    • 1994
  • Crystallizable glasses with precipitation of celsian were prepared for the purpose of insulating dielectric layers for the devices such as integrated circuit substrates. Crystallization behavior of these glasses were studied by DTA, SEM, XRD analysis and by the measurement of dielectric properties. The base composition of the glass-ceramic consists in weight percent of 30% SiO2, 10% Al2O3, 26% BaO, 10% CaO, 10% ZnO, 8%TiO2 and 6% B2O3. 2-6 wt% Y2O3 were selected as the nucleating agent to promote monoclinic celsian formation. As a result, in barium-rich glasses containing 4~6wt% Y2O3 , monoclinic celsian was developed as major crystalline phase in the temperature range of 850~90$0^{\circ}C$. Also, the dielectric constant and quality factor of these glass-ceramics were about 9 and more than 1000, respectively.

  • PDF

복소 매칭 방법을 이용한 LTCC Triplexer 구현 (Implementation of LTCC Triplexer Band Based on Conjugate Matching Method)

  • 하상훈;김형석
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1288-1293
    • /
    • 2007
  • In this paper, a compact triplexer has been implemented for Cellular/GPS/USPCS applications. In order to realize the proposed triplexer, we use a low-temperature co-fired ceramic (LTCC) substrate to enable a fully compact integrated module using a multi-layer high-density architecture, and conjugate-match the channels instead of the open matching technique. The three dimensional design capability of LTCC substrates can reduce the overall size of the triplexer, resulting in dimensions on the order of $3.2\;mm\;{\times}\;2.5\;mm\;{\times}\;1\;mm$. The measured result shows that the triplexer has, in Cellular/GPS/USPCS bands, the insertion loss of less than 0.5dB, less than 1.7dB, and less than 0.9dB in order. Also, the triplexer has an isolation of more than 15dB in the cellular and USPCS bands and an isolation of more than 20dB in the GPS band.

Co-sputtering of Microcrystalline SiGe Thin Films for Optoelectronic Devices

  • 김선조;김형준;김도영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • Recently, Silicon Germanium (SiGe) alloys have been received considerable attention for their great potentials in advanced electronic and optoelectronic devices. Especially, microcrystalline SiGe is a good channel material for thin film transistor due to its advantages such as narrow and variable band gap and process compatibility with Si based integrated circuits. In this work, microcrystalline silicon-germanium films (${\mu}c$-SiGe) were deposited by DC/RF magnetron co-sputtering method using Si and Ge target on Corning glass substrates. The film composition was controlled by changing DC and RF powers applied to each target. The substrate temperatures were changed from $100^{\circ}C$ to $450^{\circ}C$. The microstructure of the thin films was analyzed by x-ray diffraction (XRD) and Raman spectroscopy. The analysis results showed that the crystallinity of the films enhances with increasing Ge mole fraction. Also, crystallization temperature was reduced to $300^{\circ}C$ with $H_2$ dilution. Hall measurements indicated that the electrical properties were improved by Ge alloying.

  • PDF

Enhancement of outcoupling efficiency of OLEDs by using nanoimprinted polymer nanostructures

  • Jeon, So-Hee;Kang, Jae-Wook;Park, Hyung-Dol;Shim, Jong-Youp;Jeong, Jun-Ho;Kim, Se-Heon;Youn, Jae-R.;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.521-522
    • /
    • 2008
  • An etch-less simple method was developed to fabricate two-dimensional nanostructures on glass substrate directly by using UV curable polymer resin and UV nanoimprint lithography in order to improve output coupling efficiency of OLEDs. OLEDs integrated on nanoimprinted substrates enhanced electro-luminance intensity by up to 50% compared with the conventional device.

  • PDF