DOI QR코드

DOI QR Code

Transfer Methods of Inorganic Thin Film Materials for Heterogeneously- Integration Flexible Semiconductor System

이종 집적 유연 반도체 시스템 구현을 위한 무기물 박막소재의 전사 방법

  • Gyeong Hyeon Ju (Department of Materials Engineering, Jeonbuk National University) ;
  • Jeong Hyeon Kim (Department of Materials Engineering, Jeonbuk National University) ;
  • Sang Yoon Park (Department of Materials Engineering, Jeonbuk National University) ;
  • Kang Hyeon Kim (Department of Materials Engineering, Jeonbuk National University) ;
  • Han Eol Lee (Department of Materials Engineering, Jeonbuk National University)
  • 주경현 (전북대학교 신소재공학부) ;
  • 김정현 (전북대학교 신소재공학부) ;
  • 박상윤 (전북대학교 신소재공학부) ;
  • 김강현 (전북대학교 신소재공학부) ;
  • 이한얼 (전북대학교 신소재공학부)
  • Received : 2024.03.04
  • Accepted : 2024.03.21
  • Published : 2024.05.01

Abstract

With the recent development of emerging technologies, information acquisition and delivery between users has been actively conducted, and inorganic thin film transfer technology that effectively transfers various materials and devices is being studied to develop flexible electronic devices accordingly. This is aimed at innovative structural changes and functional improvement of electronic devices in the era of the Internet of Things (IoT). In particular, advanced technologies such as microLEDs are used to realize high-resolution flexible displays, and the possibility of heterogeneous integrated technologies can be presented by precisely transferring materials to substrates through various transfer process. This paper introduced physical, chemical, and self-assembly transfer methods based on inorganic thin film materials to implement heterogeneous integrated flexible semiconductor systems and introduces the results of application studies of semiconductor devices obtained through different transfer technologies. These studies are expected to bring about innovative changes in the field of smart devices, medical technology, and user interfaces in the future.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT and Future Planning (MSIT) (NRF-2022R1A4A3033320 and RS-2023-00278906), and the Commercializations Promotion Agency for R&D Outcomes (COMPA) grant funded by the Korean Government (Ministry of Science and ICT, 2023).

References

  1. H. E. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 221 (2021). doi: https://doi.org/10.4313/JKEM.2021.34.4.221
  2. J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 563 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.6.4
  3. Y. G. You, Y. J. Song, and D. W. Kim, J. Korean Contents Assoc., 9, 23 (2009). doi: https://doi.org/10.5392/jkca.2009.9.1.023
  4. H. E. Lee, J. H. Shin, J. H. Park, S. K. Hong, S. H. Park, S. H. Lee, J. H. Lee, I. S. Kang, and K. J. Lee, Adv. Funct. Mater., 29, 1808075 (2019). doi: https://doi.org/10.1002/adfm.201808075
  5. J. Shin, H. Kim, S. Sundaram, J. Jeong, B. I. Park, C. S. Chang, J. Choi, T. Kim, M. Saravanapavanantham, K. Lu, S. Kim, J. M. Suh, K. S. Kim, M. K. Song, Y. Liu, K. Qiao, J. H. Kim, Y. Kim, J. H. Kang, J. Kim, D. Lee, J. Lee, J. S. Kim, H. E. Lee, H. Yeon, H. S. Kum, S. H. Bae, V. Bulovic, K. J. Yu, K. Lee, K. Chung, Y. J. Hong, A. Ougazzaden, and J. Kim, Nature, 614, 81 (2023). doi: https://doi.org/10.1038/s41586-022-05612-1
  6. D. Chen, Y. C. Chen, G. Zeng, D. W. Zhang, and H. L. Lu, Research, 6, 0047 (2023). doi: https://doi.org/10.34133/research.0047
  7. C. Choi, H. Kim, J. H. Kang, M. K. Song, H. Yeon, C. S. Chang, J. M. Suh, J. Shin, K. Lu, B. I. Park, Y. Kim, H. E. Lee, D. Lee, J. Lee, I. Jang, S. Pang, K. Ryu, S. H. Bae, Y. Nie, H. S. Kum, M. C. Park, S. Lee, H. J. Kim, H. Wu, P. Lin, and J. Kim, Nat. Electron., 5, 386 (2022). doi: https://doi.org/10.1038/s41928-022-00778-y
  8. M. Choi, B. Jang, W. Lee, S. Lee, T. W. Kim, H. J. Lee, J. H. Kim, and J. H. Ahn, Adv. Funct. Mater., 27, 1606005 (2017). doi: https://doi.org/10.1002/adfm.201606005
  9. Y. W. Ha, G. H. Kim, and D. C. Lim, J. Korean Inst. Electr. Electron. Mater. Eng, 37, 36 (2024). doi: https://doi.org/10.4313/JKEM.2024.37.1.4
  10. J. E. Ryu, S. Park, Y. Park, S. W. Ryu, K. Hwang, and H. W. Jang, Adv. Mater., 35, 2204947 (2023). doi: https://doi.org/10.1002/adma.202204947
  11. P. J. Parbrook, B. Corbett, J. Han, T. Y. Seong, and H. Amano, Laser Photonics Rev., 15, 2000133 (2021). doi: https://doi.org/10.1002/lpor.202000133
  12. J. C. Heo, J. E. Kim, D. G. Lee, Y. S. Hwang, Y. M. Woo, H. E. Lee, and J. H. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 286 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.3.12
  13. D. J. Joe, S. Kim, J. H. Park, D. Y. Park, H. E. Lee, T. H. Im, I. Choi, R. S. Ruoff, and K. J. Lee, Adv. Mate., 29, 1606586 (2017). doi: https://doi.org/10.1002/adma.201606586
  14. X. Zhou, P. Tian, C. W. Sher, J. Wu, H. Liu, R. Liu, and H. C. Kuo, Prog. Quantum Electron., 71, 100263 (2020). doi: https://doi.org/10.1016/j.pquantelec.2020.100263
  15. S. H. Park, T. J. Kim, H. E. Lee, B. S. Ma, M. Song, M. S. Kim, J. H. Shin, S. H. Lee, J. H. Lee, Y. B. Kim, K. Y. Nam, H. J. Park, T. S. Kim, and K. J. Lee, Nat. Commun., 14, 7744 (2023). doi: https://doi.org/10.1038/s41467-023-43342-8
  16. C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi, and D. K. Sadana, Nat. Commun., 4, 1577 (2013). doi: https://doi.org/10.1038/ncomms2583
  17. H. E. Lee, S. H. Lee, M. Jeong, J. H. Shin, Y. Ahn, D. Kim, S. H. Oh, S. H. Yun, and K. J. Lee, ACS Nano, 12, 9587 (2018). doi: https://doi.org/10.1021/acsnano.8b05568
  18. D. Lee, S. Cho, C. Park, K. R. Park, J. Lee, J. Nam, K. Ahn, C. Park, K. Jeon, H. Yuh, W. Choi, C. H. Lim, T. Kwon, Y. H. Min, M. Joo, Y. H. Choi, J. S. Lee, C. Kim, and S. Kwon, Nature, 619, 755 (2023). doi: https://doi.org/10.1038/s41586-023-06167-5
  19. H. E. Lee, J. H. Choi, S. H. Lee, M. Jeong, J. H. Shin, D. J. Joe, D. H. Kim, C. W. Kim, J. H. Park, J. H. Lee, D. Kim, C. S. Shin, and K. J. Lee, Adv. Mater., 30, 1800649 (2018). doi: https://doi.org/10.1002/adma.201800649
  20. S. H. Lee, J. Kim, J. H. Shin, H. E. Lee, I. S. Kang, K. Gwak, D. S. Kim, D. Kim, and K. J. Lee, Nano Energy, 44, 447 (2018). doi: https://doi.org/10.1016/j.nanoen.2017.12.011
  21. M. Koo, K. I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, and K. J. Lee, Nano Lett., 12, 4810 (2012). doi: https://doi.org/10.1021/nl302254v
  22. H. E. Lee, J. H. Park, T. J. Kim, D. Im, J. H. Shin, D. H. Kim, B. Mohammad, I. S. Kang, and K. J. Lee, Adv. Funct. Mater., 28, 1801690 (2018). doi: https://doi.org/10.1002/adfm.201801690
  23. S. C. Park, J. Fang, S. Biswas, M. Mozafari, T. Stauden, and H. O. Jacobs, Adv. Mater., 26, 5942 (2014). doi: https://doi.org/10.1002/adma.201401573
  24. Z. Liu, C. H. Lin, B. R. Hyun, C. W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C. H. Ho, H. C. Kuo, and J. H. He, Light: Sci. Appl., 9, 83 (2020). doi: https://doi.org/10.1038/s41377-020-0268-1
  25. C. Linghu, S. Zhang, C. Wang, and J. Song, npj Flexible Electron., 2, 26 (2018). doi: https://doi.org/10.1038/s41528-018-0037-x
  26. G. Shen, X. Da, X. Guo, Y. Zhu, and N. Niu, J. Lumin., 127, 441 (2007). doi: https://doi.org/10.1016/j.jlumin.2007.02.00