• 제목/요약/키워드: Integrated photonics

검색결과 197건 처리시간 0.022초

Vascular Morphometric Changes During Tumor Growth and Chemotherapy in a Murine Mammary Tumor Model Using OCT Angiography: a Preliminary Study

  • Kim, Hoonsup;Eom, Tae Joong;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.54-65
    • /
    • 2019
  • To develop a biomarker predicting tumor treatment efficacy is helpful to reduce time, medical expenditure, and efforts in oncology therapy. In clinics, microvessel density using immunohistochemistry has been proposed as an indicator that correlates with both tumor size and metastasis of cancer. In the preclinical study, we hypothesized that vascular morphometrics using optical coherence tomography angiography (OCTA) could be potential indicators to estimate the treatment efficacy of breast cancer. To verify this hypothesis, a 13762-MAT-B-III rat breast tumor was grown in a dorsal skinfold window chamber which was applied to a nude mouse, and the change in vascular morphology was longitudinally monitored during tumor growth and metronomic cyclophosphamide treatment. Based on the daily OCTA maximum intensity projection map, multiple vessel parameters (vessel skeleton density, vessel diameter index, fractal dimension, and lacunarity) were compared with the tumor size in no tumor, treated tumor, and untreated tumor cases. Although each case has only one animal, we found that the vessel skeleton density (VSD), vessel diameter index and fractal dimension (FD) tended to be positively correlated with tumor size while lacunarity showed a partially negative correlation. Moreover, we observed that the changes in the VSD and FD are prior to the morphological change of the tumor. This feasibility study would be helpful in evaluating the tumor vascular response to treatment in preclinical settings.

All-optical Integrated Parity Generator and Checker Using an SOA-based Optical Tree Architecture

  • Nair, Nivedita;Kaur, Sanmukh;Goyal, Rakesh
    • Current Optics and Photonics
    • /
    • 제2권5호
    • /
    • pp.400-406
    • /
    • 2018
  • The Semiconductor Optical Amplifier (SOA)-based Mach-Zehnder interferometer is a major contributor in all-optical digital processing and optical computation. Optical tree architecture provides one of the new, alternative schemes for integrated all-optical arithmetic and logical operations. In this paper, we propose an all-optical 3-bit integrated parity generator and checker using SOA-MZI-based optical tree architecture. The proposed scheme, able to process input signals at a desired operating wavelength, has been characterized using RZ-modulated signals at 10 Gbps. The maximum extinction ratios achieved at the output of the parity generator and checker are 10 dB and 8 dB respectively.

Analysis of Acetone Absorption Spectra Using Off-axis Integrated Cavity Output Spectroscopy for a Real-time Breath Test

  • Lim Lee;Yonghee Kim;Byung Jae Chun;Taek-Soo Kim;Seung-Kyu Park;Kwang-Hoon Ko;Ki-Hee Song;Hyunmin Park
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.761-765
    • /
    • 2023
  • We analyzed the absorption spectra of acetone in the 3.37 ㎛ mid-infrared range using the off-axis integrated cavity output spectroscopy technique to develop a real-time, in-line breath analysis device. The linear relationship between acetone concentration and absorption increase was confirmed as 0.32%/ppm, indicating that the developed device allows for a quantitative analysis of acetone concentration in exhaled breath. To further confirm the feasibility of using our device for breath analysis, we measured the acetone concentration of human breath samples at the sub-ppm level.

Surface Emitting Terahertz Transistor Based on Charge Plasma Oscillation

  • Kumar, Mirgender;Park, Si-Hyun
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.544-550
    • /
    • 2017
  • This simulation based study reports a novel tunable, compact, room temperature terahertz (THz) transistor source, operated on the concept of charge plasma oscillation with the capability of radiating within a terahertz gap. A vertical cavity with a quasi-periodic distributed-Bragg-reflector has been attached to a THz plasma wave transistor to achieve a monochromatic coherent surface emission for single as well as multi-color operation. The resonance frequency has been tuned from 0.5 to 1.5 THz with the variable quality factor of the optical cavity from 5 to 290 and slope efficiency maximized to 11. The proposed surface emitting terahertz transistor is able to satisfy the demand for compact solid state terahertz sources in the field of teratronics. The proposed device can be integrated with Si CMOS technology and has opened the way towards the development of silicon photonics.

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

협대역 고반사 파장 필터 구현을 위한 폴리머 광도파로 에포다이즈드 격자 (Polymer Waveguide Apodized Grating for Narrow-Bandwidth High-Reflectivity Wavelength Filters)

  • 이원준;황광호;신진수;오민철
    • 한국광학회지
    • /
    • 제26권4호
    • /
    • pp.203-208
    • /
    • 2015
  • 파장 투과 대역폭이 좁으면서도 반사율이 높은 파장 필터를 구현하기 위해서 격자의 반사율이 진행 방향을 따라 서서히 변하는 구조의 에포다이즈드 격자 구조를 폴리머 광도파로와 함께 제작하였다. 격자로 인한 유효 굴절률 변화가 $5{\times}10^{-4}$인 경우에 대하여 에포다이즈드 격자의 길이에 따른 반사율 변화를 설계하였으며 길이가 15 mm 이상이 되는 경우에 반사율이 99%에 도달함을 확인하였다. 길이가 서로 다른 여러 개의 격자를 제작하여 반사율, 3-dB 대역폭, 20-dB 대역폭을 측정하였으며, 격자 길이가 18 mm인 소자에서 95%의 반사율을 얻을 수 있었고, 이때 3-dB 대역폭은 0.28 nm, 그리고 20-dB 대역폭은 0.70 nm의 특성을 가짐을 확인하였다.

Nb Trilayer를 사용한 단자속양자 논리연산자의 제작공정 (Fabrication Process of Single Flux Quantum ALU by using Nb Trilayer)

  • 강준희;홍희송;김진영;정구락;임해용;박종헉;한택상
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.181-185
    • /
    • 2007
  • For more than two decades Nb trilayer ($Nb/Al_2O_3/Nb$) process has been serving as the most stable fabrication process of the Josephson junction integrated circuits. Fast development of semiconductor fabrication technology has been possible with the recent advancement of the fabrication equipments. In this work, we took an advantage of advanced fabrication equipments in developing a superconducting Arithmetic Logic Unit (ALU) by using Nb trilayers. The ALU is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. We used DC magnetron sputtering technique for metal depositions and RF sputtering technique for $SiO_2$ depositions. Various dry etching techniques were used to define the Josephson junction areas and film pattering processes. Our Nb films were stress free and showed the $T{_c}'s$ of about 9 K. To enhance the step coverage of Nb films we used reverse bias powered DC magnetron sputtering technique. The fabricated 1-bit, 2-bit, and 4-bit ALU circuits were tested at a few kilo-hertz clock frequency as well as a few tens giga-hertz clock frequency, respectively. Our 1-bit ALU operated correctly at up to 40 GHz clock frequency, and the 4-bit ALU operated at up to 5 GHz clock frequency.

  • PDF

Loss-Coupled DEB LD집적 Mach-Zehnder 간섭계형 파장 변환기 (All-optical mach-zehnder interferometric wavelength converter monolithically integrated with loss-coupled DFB probe source)

  • 김현수;김종회;심은덕;백용순;김강호;권오기;오광룡
    • 한국광학회지
    • /
    • 제14권4호
    • /
    • pp.454-459
    • /
    • 2003
  • 단일 모드 광원이 집적된 Mach-Zehnder간섭계형 파장 변환기를 제작하여 세계 최초로 10 Gb/s에서 파장 변환 특성을 확인하였다. 제작된 파장 변환기는 수동 도파로 영역에서의 전파 손실을 줄이기 위해 undoped InP층이 수동 도파로 위에 형성된 새로운 BRS 구조를 사용하였다. 단일 모드 광원으로 손실 결합형 분포 궤환형 반도체 레이저(loss-coupled distributed feedback laser; LC-DFB LD)를 사용하여, 파장 변환기에 있는 반도체 광증폭기의 주입전류가 200 mA까지 측모드 억제율이 30 dB 이상의 값을 나타내었다. 제작된 LC-DFB LD 집적 파장 변환기는 10 Gb/s의 동적 파장 변환 특성 측정 결과, 7 dB 정도의 소광비를 갖는 eye 패턴을 얻을 수 있었으며, power penalty는 $10^{-9}$ bit error rate에서 2.8 dB의 값을 나타내었다.

분수차 퓨리에 변환을 위한 평판집적 광학계 구현 (Planar integrated optics for implementation of fractional fourier transform)

  • 박선택;김필수;오차환;송석호
    • 한국광학회지
    • /
    • 제7권4호
    • /
    • pp.333-340
    • /
    • 1996
  • 기존 퓨리에 변환의 일반화된 형식인 분수차 퓨리에 변환을 평판집적 광학계로 구현하였다. 구현된 평판집적 광학계는 동일한 2차원 입력패턴에 대해 서로 다른 분수차를 갖는 4개의 FRT의 결과를 얻을 수 있는 구조를 가지며 모든 부품들은 레이저 빔 묘화장치를 이용하여 하나의 유리판에 동시에 제작되었다. FRT 실험결과를 계산치와 비교 분석함으로써 평판집적 광학계가 기존의 자유공간 광학계가 갖는 3차원적 광신호 전달 특성과 이에 따른 높은 신호의 공간대역폭을 가지고 매우 정확한 FTR를 수행할 수 있음을 검증하였다.

  • PDF

Design of a Beam-coupling System for a Chip-integrated Spectrometer with a Discrete Linear Waveguide

  • Liu, Zhiying;Jiang, Xin;Li, Mingyu
    • Current Optics and Photonics
    • /
    • 제4권3호
    • /
    • pp.229-237
    • /
    • 2020
  • In this study, a beam-coupling system is designed to improve the coupling efficiency of achip-integrated spectrometer when the waveguide is arranged in a linear and discrete manner. In the proposed system the beam is shaped to be anti-Gaussian, to deposit adequate energy in the edge waveguides. The beam is discretely coupled to the corresponding waveguide by a microlens array, to improve the coupling efficiency, and is compressed by a toroidal lens to match the linear discrete waveguides. Based on the findings of this study, the coupling efficiency of the spectrometer is shown to increase by a factor of 2.57. Accordingly, this study provides a reference basis for the improvement of the coupling efficiency of other similar spectrometers.