Browse > Article
http://dx.doi.org/10.3807/KJOP.2015.26.4.203

Polymer Waveguide Apodized Grating for Narrow-Bandwidth High-Reflectivity Wavelength Filters  

Lee, Won-Jun (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University)
Huang, Guanghao (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University)
Shin, Jin-Soo (Photonic Networks Research Lab., Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Oh, Min-Cheol (Nano-Bio Photonics Lab., Department of Electronic Engineering, Pusan National University)
Publication Information
Korean Journal of Optics and Photonics / v.26, no.4, 2015 , pp. 203-208 More about this Journal
Abstract
Wavelength filters are essential components for selecting a certain wavelength channel of a WDM optical communication system. To realize wavelength filters with narrow bandwidth and high reflectivity, an apodized grating structure with length of 15 mm and index modulation of $5{\times}10^{-4}$ was designed. The device exhibited a reflectivity of 95%, 3-dB bandwidth of 0.28 nm, and 20-dB bandwidth of 0.70 nm on an 18 mm grating length.
Keywords
Integrated optics device; Optical waveguide; Wavelength filter; Polymer device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, "Polymeric wavelength filters with polymer gratings," Appl. Phys. Lett. 72, 1559-1561 (1998).   DOI
2 D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36, 50-55 (1998).
3 Y. J. Rao, "Recent progress in applications of in-fibre Bragg grating sensors," Opt. Laser. Eng. 31, 297-324 (1999).   DOI
4 T. L. Yeo, T. Sun, and K. T. V. Grattan, "Fibre-optic sensor technologies for humidity and moisture measurement," Sens. Actuators A-Phys. 144, 280-295 (2008).   DOI
5 A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).   DOI
6 L. Domash, M. Wu, N. Nemchuk, and E. Ma, "Tunable and switchable multiple-cavity thin film filters," J. Lightwave Technol. 22, 126-135 (2004).   DOI
7 M. Lequime, R. Parmentier, F. Lemarchand, and C. Amra, "Toward tunable thin-film filters for wavelength division multiplexing applications," Appl. Opt. 41, 3277-3284 (2002).   DOI
8 R. Parmentier and M. Lequime, "Substrate-strain-induced tunability of dense wavelength-division multiplexing thin-film filters," Opt. Lett. 28, 728-730 (2003).   DOI
9 B. Yu, G. Pickrell, and A. Wang, "Thermally tunable extrinsic Fabry-Perot filter," IEEE Photon. Technol. Lett. 16, 2296-2298 (2004).   DOI
10 S. Milne, J. M. Dell, A. J. Keating, and L. Faraone, "Widely tunable MEMS-based Fabry-Perot filter," J. Microelectromech. Syst. 18, 905-908 (2009).   DOI
11 D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, G. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).   DOI
12 A. Iocco, H. G. Limberger, R. P. Salathé, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, "Bragg grating fast tunable filter for wavelength division multiplexing," J. Lightwave Technol. 17, 1217-1221 (1999).   DOI
13 M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S. G. Han, and H.-G. Kim, "Tunable wavelength filters with Bragg gratings in polymer waveguides," Appl. Phys. Lett. 73, 2543-2545 (1998).   DOI
14 D. Sadot and E. Boimovich, "Tunable optical filters for dense WDM networks," IEEE Commun. Mag. 36, 50-55 (1998).
15 J. Singh, A. Khare, and S. Kumar, "Design of gaussian apodized fiber Bragg grating and its applications," Int. J. Eng. Sci. and Technol. 2, 1419-1424 (2010).
16 S. F. Zhou, L. Reekie, H. P. Chan, K. M. Luk, and Y. T. Chow, "Apodization of terahertz Bragg gratings in subwavelength polymer fiber," Opt. Lett. 38, 2807-2809 (2013).   DOI