• Title/Summary/Keyword: Integrated controller

Search Result 588, Processing Time 0.026 seconds

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.

Development of Peripheral Units of the 16 bit Micro-Controller for Mobile Telecommunication Terminal (이동통신 단말기용 16 비트 마이크로콘트롤러의 주변장치 개발)

  • 박성모;이남길;김형길;김세균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.142-151
    • /
    • 1995
  • The trend of compact size, light weight, low power consumption in the portable telecommunication equipments demands large scale integration and low voltage operation of chips and the minimization of the number of the components in the telecommunication terminal. According to the trend, existing chip components are modulized and are integrated as a part into a bigger chip. This paper is about the development of the peripheral units of micro-controller for mobile telecommunication terminal. Peripherals consist of DMA controller, Interrupt controller, timer, watchdog timer, clock generator, and power management unit. They are designed to be integrated with EU(Execution Unit) and BIU(Bus Interface Unit) into a 16 bit micro-controller which will be used as a core of an ASIC for next generation digital mobile telecommunication terminal. At first, whole block of the micro-controller was described by VHDL behavioral model and simulated to verify its overall operation. Then, watchdog timer, clock generator and power management unit were directly synthesized by using VHDL synthesis tool. Rest of the pheriperal units were designed and simulated by using Compass Design Tool.

  • PDF

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (I) - Modeling and Performance Analysis - (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (I) -모델링 및 성능해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1029-1037
    • /
    • 2004
  • High-speed/precision servomechanisms have been widely used in the manufacturing and semiconductor industries. In order to ensure the required high-speed and high-precision specifications in servomechanisms, an integrated design methodology is required, where the interactions between mechanical and electrical subsystems will have to be considered simultaneously. For the first step of the integrated design process, it is necessary to obtain not only strict mathematical models of separate subsystems but also formulation of an integrated design problem. A two-degree-of-freedom controller described in the discrete-time domain is considered as an electrical subsystem in this paper. An accurate identification process of the mechanical subsystem is conducted to verify the obtained mathematical model. Mechanical and electrical constraints render the integrated design problem accurate. Analysis of the system performance according to design and operating parameters is conducted for better understanding of the dynamic behavior and interactions of the servomechanism. Experiments are performed to verify the validity of the integrated design problem in the x-Y positioning system.

Robot controller with 32-bit DSP chip (32 비트 DSP를 사용한 로보트 제어기의 개발)

  • 김성권;황찬영;전병환;이규철;홍용준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.292-298
    • /
    • 1991
  • A new 6-axis robot controller with a high-speed 32-bit floating-point DSP TMS32OC30 has been developed in Samsung Electronics. The controller composed of Intel 80386 microprocessor for the main controller, and TKS32OC30 DSP chip for joint position controller. The characteristics of the controller are high sampling rate of 200us and fast reponsibility. The main controller supports MS-DOS, kinematics, trajectory planning, and sensor fusion functions which are vision, PLC, and MAP. The one high speed DSP chip is used for controlling 6 axes of a robot in 200us simultaneously. The control law applied is PID controller including a velocity feedforvard in joint position controller. The performance tests, such as command following, CP, were conducted for the controller integrated with a 6 axes robot developed in Samsung Electronics. The results showed a good performance. This controller can also perform the system control with other controllers, the communication with high priority controllers, and visual information processing.

  • PDF

Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing (반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가)

  • Ahn, Jin-Hong;Kang, Ki-Tai;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

Optimal Tuning of a Ballscrew Driven Biaxial Servo System (외란관측기를 이용한 볼스크류 구동 2축 서보계의 최적튜닝)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.589-597
    • /
    • 2011
  • In this paper, optimal tuning of a cross-coupled controller linked with the feedforward controller and the disturbance observer is studied to improve contouring and tracking accuracy as well as robustness against disturbance. Previously developed integrated design and optimal tuning methods are applied for developing the robust tuning method. Strict mathematical modeling of the multivariable system is formulated as a state-space equation. Identification processes of the servomechanism are conducted for mechanical servo models. An optimal tuning problem to minimize both the contour error and settling time is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servo control system. Constraints such as relative stability, robust stability and overshoot, etc. are considered for the optimization. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm the control performance and robustness despite the variation of parameters of the mechanical subsystems.

Development of a Control Method of Traction Control System Using Vehicle Model (차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발)

  • Song Jeonghoon;Kim Heungseob;Lee Dae Hee;Son Minhyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.

SQUIRREL SEARCH PID CONTROLLER ALGORITHM BASED ACTIVE QUEUE MANAGEMENT TECHNIQUE FOR TCP COMMUNICATION NETWORKS

  • Keerthipati.Kumar;R.A. KARTHIKA
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.123-133
    • /
    • 2023
  • Active queue management (AQM) is a leading congestion control system, which can keep smaller queuing delay, less packet loss with better network utilization and throughput by intentionally dropping the packets at the intermediate hubs in TCP/IP (transmission control protocol/Internet protocol) networks. To accelerate the responsiveness of AQM framework, proportional-integral-differential (PID) controllers are utilized. In spite of its simplicity, it can effectively take care of a range of complex problems; however it is a lot complicated to track down optimal PID parameters with conventional procedures. A few new strategies have been grown as of late to adjust the PID controller parameters. Therefore, in this paper, we have developed a Squirrel search based PID controller to dynamically find its controller gain parameters for AQM. The controller gain parameters are decided based on minimizing the integrated-absolute error (IAE) in order to ensure less packet loss, high link utilization and a stable queue length in favor of TCP networks.

Integrated Structure and Controller Design of Single-Link Flexible Arm for Improving the Performance of Position Control (유연 외팔보의 위치제어 성능향상을 위한 형상 및 제어기 통합설계)

  • Lee, Min-U;Park, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.120-129
    • /
    • 2002
  • An integrated structure and controller design approach for rotating cantilever beam is presented. An optimization method is developed for improving positioning performance considering the elastic deformations during high speed rotation and adopting the beam shape and the control gains as design variables. For this end, a dynamic model is setup by the finite element method according to the shape of the beam. The mass and stiffness of the beam are distributed in such a way that the closed-loop poles of the control system should be located leftmost in the complex s-plane. For optimization method, the simulated annealing method is employed which has higher probability to find the global minimum than the gradient-based down-hill methods. Sequential design and simultaneous design methods are proposed to obtain the optimal shape and controller. Simulations are performed with new designs by the two methods to verify the effectiveness of the approach and the results show that the settling time is improved for point-to-point position controls.