• Title/Summary/Keyword: Integrated Structural Design

Search Result 439, Processing Time 0.025 seconds

Object-Oriented Database Application for An Integrated Structural Design Process (일관 구조설계 시스템 구축에 있어서 객체지향 데이터 베이스의 도입)

  • 천진호;김홍국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.79-85
    • /
    • 1993
  • An integrated structural design system can define and process complex design information that occurs in each of the design stages for flexible cooperation. It can also reduce human error on sequential design steps: preliminary design, analysis and detailed design. Therefore, it's very important to have consistent semantic expression and procedure for structural design information that has complex relationships. In this study, we introduce the object-oriented concepts and object-oriented database thechnique that provides high level semantic expression in order to develop an integrated structural design system.

  • PDF

Development and Implementation of Design Object Model for Integrated Structural Design System (통합 구조설계 시스템을 위한 설계 객체 모델의 개발과 구현)

  • 천진호;이창호;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.151-158
    • /
    • 2001
  • This paper describes an example of developing an integrated design system, Integrated Structural Design System for Reinforced Concrete Buildings(INDECON). INDECON incorporates a central database and three design modules: a preliminary design module(PDM), a structural analysis module(SAM), and a detailed design module(DDM). The development of INDECON begins with the development of design models including Design Object Model(DOM) which describes design data during the structural design process. The Design Object Model is transformed to Design Table Model(DTM) for the central database, and is specified to be in detail for the three design modules. Then the central database is implemented and managed by relational database management system(RDBMS), and the three design modules are implemented using C++ programming language. The central database in the server computer communicates with the design modules in the client computers using TCP/IP internet protocol. The developing procedure for INDECON in this paper can be applied for developing more comprehensive integrated structural design systems.

  • PDF

Development of Integrated Design System for Structural Design of Machine Tools (공작기계 구조물 설계를 위한 통합설계 시스템 개발)

  • 박면웅;손영태;조성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.229-239
    • /
    • 2003
  • The design process of machine tools is regarded as a sequential, discrete, and inefficient works as it requires various kinds of design tools and many working hours. This paper describes an integrated design system embedding a design methodology that can support efficiently and systematically the conceptual structural design of machine tools. The system is a knowledge-based design system and has four machine-tool-specific functional modules including configuration design, configuration analysis, structure design, and structural analysis support module. Through the configuration design and analysis module, a machine configuration appropriate for design requirements is selected, and then the arrangement of ribs fer each structural part is decided in the structure design module. Also, the structural analysis support module is used to evaluate design result by utilizing structural analysis software, ANSYS. The system is applied to design of a tapping machine, and shows that the machine structure can be designed fast and conveniently by processing each design step interactively.

An application of a Knowledge-Based System for Structural Planning (구조계획에서의 지식기반시스템 도입연구)

  • 김상철;김홍국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.137-144
    • /
    • 1994
  • This study describes an application of a knowledge-based system for a part of the development of an integrated structural design system. In preliminary structural design procedure, most structural design operation are performed by structural engineer's manual method. These lack of systematic operation hampers the effective system integration. By introducing expert system to the structural planning stage, structural engineer can automate structural Planning process of an integrated structural design system for complex design. Engineering data management is receiving increasing attention due to complexity of information necessary for performing structural engineering operations. So, in this paper, we describe a methodology for automating conceptual structural design and developing a knowledge-based system integrated with database. At the end, we use an implemented example to support our methodology.

  • PDF

Integrated Structural Design of Oceanic Buildings using STEP (STEP을 이용한 해양건축물의 통합구조설계 기법)

  • 송화철
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.77-86
    • /
    • 2000
  • The planning process of complex projects in oceanic architectural engineering is characterized by the cooperation of many involved specialists and by a high degree of information exchange. In order to improve the quality of the structural design of oceanic buildings, information of different involved partners in the planning process has to be integrated. This paper aims to introduce a concept of the integrated structural design for the floating-type oceanic building using STEP(Standard for the Exchange of Product Model Data). STEP(ISO 10303) is an international standard for the computer-interpretable representation and exchange of product data and it provides a consistent data exchange format and application interfaces between different application systems. In this paper, the structural design process and information of oceanic buildings is analyzed and product models are preposed fir the exchange of the structural design information between superstructure and floating structure. The entities for calculating wind loads, metacenter and restoring forces are represented by Express. As a case study a floating hotel is applicated to describe the STEP physical file.

  • PDF

Construction of Web-based Structural Design Environment for Mid and Row-Rise Buildings (웹기반 중저층건물 구조설계 시스템 및 환경 구축)

  • Hwang Young-Chul;Kim Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.500-507
    • /
    • 2006
  • Recently, the structural design code has been changed and every buildings, which have more than three floors or wider area than 1,000m2, should be designed to be able to resist earthquakes. However, most structural engineers are working in some big cities and this physical distance would set a barrier between structural engineers and architects. As a result, most row-rise buildings in small cities are designed and constructed without structural design or the consulting by structural engineers. The purpose of this research is to develop an web-based structural design environment in which structural design and consulting can be performed efficiently through on-line communication without off-line meetings or documents. In addition to the on-line communication, the system has a integrated structural design module which supports all the process of structural design and can increases the productivity of structural design work.

  • PDF

A Study on the Development of an Integrated Structural Design System for Buildings (건축구조설계 통합시스템의 개발에 관한 연구)

  • 김이두;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.79-84
    • /
    • 1992
  • An integrated design system has as its aim the incoporation of all the design processes, such as, planning, preliminary design, analysis, detailed design (mamber design), evaluation, and drafting into an unified software system. Successful implementation such a system could lead to major improvements in efficiency by eliminating duplication of data and efforts. reducing errors, saving design time, providing management support, and so on. This study presents a methodology for an computer-integrated design system for building structures, synthesizing algorithmic procedures and knowledge based expert systems on the network database. Network database, which was designed to store all information systematically during the design processes, provides centeral communication area between algorithms and expert systems. The conventional procedural codes automate the routine design phases such as structural analysis, whereas knowledge-based expert systems support designer's decisions at the creative design phases such as preliminary design etc. The user interface with interactive and batch modes controls the design phases and manages design information and activates the algorithms and the expert systems. The concept presented in this paper will contribute to the formulation of automated design systems for building structures.

  • PDF

Introduction of distributed system for a integrated structual design systems (통합 구조설계 시스템 구축에서의 분산시스템 도입)

  • 강인호;천진호;신동철;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.343-350
    • /
    • 1999
  • This study introduce how distributed object technology can be applied effectively to use in a integrated structural design systems environment with the rapid increasement in the use of network technology. The architecture and management models of the developed systems are described by the CORBA(Com mon Object Request Broke Architecture) distribution standard and objects in Java language. The proposed system can be used for communicating with data between remote designers, regardless of the H/W or S/W platforms they use. Introduction of distributed objects methodologies to a Integrated structural design systems provide advanced levels of integration in structural design environment.

  • PDF

Design Object Model for Implementation of Integrated Structural Design System for Building Structures (건물 구조 통합 구조설계 시스템의 구현을 위한 설계 객체 모델)

  • 천진호;박연수;이병해
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.115-127
    • /
    • 2000
  • The purpose of this study is to propose the Design Object Model for implementation of an integrated structural design system for building structures. This study outlines the step-by-step development methodologies of the Design Object Model, which covers classification and modeling of the building design information. The Design Object Model has been efficiently developed through the proposed development methodologies. As a result, the Design Object Model has been proved to be efficient in design information management by representing the information from planning perspective, in recognition of structural member in space by the topology design object, and in representation of analysis s design information.

  • PDF

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.