• 제목/요약/키워드: Integrated Kalman Filter

검색결과 130건 처리시간 0.028초

Kalman Filter-based Navigation Algorithm for Multi-Radio Integrated Navigation System

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.99-115
    • /
    • 2020
  • Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.

Investigation into SINS/ANS Integrated Navigation System Based on Unscented Kalman Filtering

  • Ali, Jamshaid;Jiancheng, Fang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.241-245
    • /
    • 2005
  • Strapdown inertial navigation system (SINS) integrated with astronavigation system (ANS) yields reliable mission capability and enhanced navigational accuracy for spacecrafts. The theory and characteristics of integrated system based on unscented Kalman filtering is investigated in this paper. This Kalman filter structure uses unscented transform to approximate the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The filter implementation subsumed here is in a direct feedback mode. Axes misalignment angles of the SINS are observation to the filter. A simple approach for simulation of axes misalignment using stars observation is presented. The SINS error model required for the filtering algorithm is derived in space-stabilized mechanization. Simulation results of the integrated navigation system using a medium accuracy SINS demonstrates the validity of this method on improving the navigation system accuracy with the estimation and compensation for gyros drift, and the position and velocity errors that occur due to the axes misalignments.

  • PDF

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

우주항법을 위한 GPS/SDINS/ST 결합 알고리듬 (Integration Algorithm of GPS/SDINS/ST for a Space Navigation)

  • 이창용;조겸래;이대우;조윤철
    • 한국항공운항학회지
    • /
    • 제24권2호
    • /
    • pp.1-10
    • /
    • 2016
  • A GPS/SDINS/ST(Star Tracker) integrated sensor algorithm is more robust than the GPS/SDINS and the ST/SDINS systems on exploration of other planets. Most of the advanced studies shown that GPS/SDINS/ST integrated sensor with centralized Kalman filter was more accurate than those 2 integrated systems. The system, however, consist of a single filter, it is vulnerable to defects on failed data. To improve the problem, we work out a study using federated Kalman filter(No-Reset mode) and centralized Kalman filter with adaptive measurement fusion which known as robustness on fault. The simulation results show that the debasing influences are reduced and the computation is enable at least 100Hz. Further researches that the initial calibration in accordance with observability and applying the exploration trajectory are needed.

CenterTrack-EKF: 확장된 칼만 필터를 이용한 개선된 다중 객체 추적 (CenterTrack-EKF: Improved Multi Object Tracking with Extended Kalman Filter)

  • 양현성;심춘보;정세훈
    • 스마트미디어저널
    • /
    • 제13권5호
    • /
    • pp.9-18
    • /
    • 2024
  • 객체 궤적 모델링은 다중 객체 추적(Multi Object Tracking, MOT)의 주요 과제다. CenterTrack은 객체 중심 위치를 추적하는 Heatmap 기반의 방법으로 이를 해결하고자 했다. 하지만 복잡한 움직임과 비선형성을 가진 객체를 추적할 때 제한적인 성능을 보였다. 우리는 CenterTrack의 성능 저하 요인을 보행자의 동적 움직임으로 간주하여 확장된 칼만 필터(Extended Kalman Filter, EKF)를 CenterTrack에 통합했다. 우리가 제안하는 방법의 우수성을 입증하기 위해 기존 칼만 필터(Kalman Filter, KF)와 무향 칼만 필터(Unscented Kalman Filter, UKF)를 CenterTrack에 적용 후 다양한 데이터셋에 비교 평가했다. 실험결과, EKF를 CenterTrack에 통합했을 때 73.7% MOTA(Multiple Object Tracking Accuracy)를 달성하며 CenterTrack에 가장 적합한 필터임을 확인했다.

Modified Unscented Kalman Filter for a Multirate INS/GPS Integrated Navigation System

  • Enkhtur, Munkhzul;Cho, Seong Yun;Kim, Kyong-Ho
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.943-946
    • /
    • 2013
  • Instead of the extended Kalman filter, the unscented Kalman filter (UKF) has been used in nonlinear systems without initial accurate state estimates over the last decade because the UKF is robust against large initial estimation errors. However, in a multirate integrated system, such as an inertial navigation system (INS)/Global Positioning System (GPS) integrated navigation system, it is difficult to implement a UKF-based navigation algorithm in a low-grade or mid-grade microcontroller, owing to a large computational burden. To overcome this problem, this letter proposes a modified UKF that has a reduced computational burden based on the basic idea that the change of probability distribution for the state variables between measurement updates is small in a multirate INS/GPS integrated navigation filter. The performance of the modified UKF is verified through numerical simulations.

수중운동체 복합항법 성능 향상을 위한 DVL/RPM 기반의 속도 필터 설계 (DVL-RPM based Velocity Filter Design for a Performance Improvement Underwater Integrated Navigation System)

  • 유태석;윤선일
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.774-781
    • /
    • 2013
  • The purpose of this paper is to design a DVL-RPM based VKF (Velocity Kalman Filter) design for a performance improvement underwater integrated navigation system. The proposed approach relies on a VKF, augmented by a altitude from Echo-sounder based switching architecture to yield robust performance, even when DVL (Doppler Velocity Log) exceeds the measurement range and the measured value is unable to be valid. The proposed approach relies on two parts: 1) Indirect feedback navigation Kalman filter design, 2) VKF design. To evaluate proposed method, we compare the results of the VKF aided navigation system with simulation result from a PINS (Pure Inertial Navigation System) and conventional INS-DVL method. Simulations illustrate the effectiveness of the underwater navigation system assisted by the additional DVL-RPM based VKF in underwater environment.

Augmented 칼만 필터를 이용한 전자광학 추적 장비의 측정치 시간지연 보상과 초기 자세 결정 (Measurement Time-Delay Compensation and Initial Attitude Determination of Electro-Optical Tracking System Using Augmented Kalman Filter)

  • 손재훈;최우진;김성수;오상헌;이상정;황동환
    • 한국멀티미디어학회논문지
    • /
    • 제24권12호
    • /
    • pp.1589-1597
    • /
    • 2021
  • Due to the low output rate and time delay of vehicle's navigation results, the electro-optical tracking system(EOTS) cannot estimate accurate target positions. If an inertial measurement unit(IMU) is additionally mounted into the EOTS and inertial navigation system(INS) is constructed, the high navigation output rate can be obtained. And the time-delay can be compensated by using the augmented Kalman filter. An accurate initial attitude is required in order to have accurate navigation outputs. In this paper, an attitude determination algorithm is proposed using the augmented Kalman filter in order to compensate measurement delay of the EOTS and have accurate initial attitude. The proposed initial attitude determination algorithm consists of an augmented Kalman filter, an INS, and an integrated Kalman filter. The augmented Kalman filter compensates the time-delay of the vehicle's navigation results and the integrated Kalman filter estimates the navigation error of the INS. In order to evaluate performance of the proposed algorithm, vehicle's navigation outputs and IMU measurements were generated using sensors' model-based measurement generator and initial attitude estimation errors of the proposed algorithm and the conventional algorithm without the augmented Kalman filter were compared for the generated measurements. The evaluation results show that the proposed algorithm has better accuracy.

Fault Detection Using Propagator for Kalman Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.978-983
    • /
    • 2003
  • In this paper, we propose a fault detection method for extended Kalman filter in decentralized filter structure. To detect a fault, a consistency between filter output and a monitoring signal is tested. State propagators are used to obtain the monitoring signal. However, the output of state propagator increases in magnitude and finally diverges as time runs. To solve such problem, two-propagator method was proposed for linear system. Two propagators are reset by Kalman filter output, alternatively, to avoid divergence. But a test statistics change abruptly at the reset instant in that method. Hence a N-step propagator method is proposed to fix up the problem. In the N-step propagator, only time propagations are performed from k-N+1 step to k step without measurement updates. A test statistics are defined by errors and its covariance between extended Kalman filter and N-step propagator. These fault detection methods are applied to integrated strapdown inertial navigation system (SDINS). By computer simulation, it is shown that the proposed methods detect a fault effectively.

  • PDF

Modified RHKF Filter for Improved DR/GPS Navigation against Uncertain Model Dynamics

  • Cho, Seong-Yun;Lee, Hyung-Keun
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.379-387
    • /
    • 2012
  • In this paper, an error compensation technique for a dead reckoning (DR) system using a magnetic compass module is proposed. The magnetic compass-based azimuth may include a bias that varies with location due to the surrounding magnetic sources. In this paper, the DR system is integrated with a Global Positioning System (GPS) receiver using a finite impulse response (FIR) filter to reduce errors. This filter can estimate the varying bias more effectively than the conventional Kalman filter, which has an infinite impulse response structure. Moreover, the conventional receding horizon Kalman FIR (RHKF) filter is modified for application in nonlinear systems and to compensate the drawbacks of the RHKF filter. The modified RHKF filter is a novel RHKF filter scheme for nonlinear dynamics. The inverse covariance form of the linearized Kalman filter is combined with a receding horizon FIR strategy. This filter is then combined with an extended Kalman filter to enhance the convergence characteristics of the FIR filter. Also, the receding interval is extended to reduce the computational burden. The performance of the proposed DR/GPS integrated system using the modified RHKF filter is evaluated through simulation.