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1. INTRODUCTION 
The rationale of the inertial navigation system is the 

measurement of trajectory of the vehicle in space and the 
consequent specification of the changes to that trajectory with 
will bring the vehicle into coincidence with a predetermined 
target. The trajectories, of course, are functions of the position 
and velocity vectors of the vehicle. These vectors are usually 
observed with reference to some reference frame. Powered 
flight phase of the vehicle is the most decisive phase during 
which, with the help of navigation information, vehicle is 
placed on a trajectory with flight conditions which are 
appropriate for the desired target [1]. Therefore, the navigation 
accuracy and reliability requirements for an autonomous 
vehicle necessitate high precision navigation solutions and 
require the system to provide data unfailingly.  

With the swift advancements in the inertial sensor 
technologies and computing power, SINS has supplanted the 
conventional gimbaled systems. But, small error sources in the 
inertial instruments plus capricious variations in the 
gravitational field forces combine to cause a slow error build 
up and result is a miss distance at the target. The extended 
duration of the vehicle’s flight and absence of updates from 
the ground sources lead to a greater probability of errors in the 
navigation solution. Therefore, an external aiding is deemed 
vital to augment the navigation system for precision guidance. 
The Global Positioning System (GPS) is a prevalent choice for 
SINS augmentation but its vulnerability to jamming and 
degraded accuracy in hostile environments makes it an 
indigent option. The astronavigation system, as has been used 
in the past, is still popular and finds its application in the 
modern space missions. Consequently, SINS integrated with 
ANS using a nonlinear filtering technique is the subject of this 
paper.  

 For short and medium range guided munitions, gyro drift 
has a significant contribution to navigation error. ANS is an 
effective source to estimate in-flight gyros drift and also the 
velocity and position errors contributed by the drift. As an 
alternate to the more conventional GPS, which is vulnerable to 
jamming and other disturbances, ANS cannot be disturbed as 
easily, and the system is impossible to jam. As its intended use 
is with spacecrafts, this system works in space where there is 

no hindrance in star observation. In this way, it is all weather 
and all time navigation aid. With the technological progress 
and image processing techniques, ANS has become camera 
based navigation system where charge coupled device (CCD) 
array, mounted in strapdown configuration, is used as a star 
sensor. Current CCD sensors provide a relatively inexpensive 
way to image sky and extract the required information. Body 
fixed sensors can scan a section of the sky and determine the 
association between the scanned stars and the catalog of 
reference stars stored onboard using some star identification 
techniques. Stars identification leads to estimate attitude 
information.  

The mainstay to an integrated navigation system is the 
concept of fusing noisy observations from SINS and ANS for 
an enhanced navigation solution. Kalman filter, an optimal 
recursive dada processing algorithm, has been widely used in 
the integrated navigation systems. The Kalman filter processes 
all available measurements of a variable of interest, regardless 
of their accuracy, based on the knowledge of the system and 
measurement dynamics, the statistical description of the 
system noises, and model uncertainties [2]. In some cases the 
model may be linear, but most systems models are nonlinear 
in nature. In this paper, we apply the unscented Kalman filter 
(UKF) framework to the problem of nonlinear estimation and 
sensor fusion for the SINS/ANS integration. The fundamental 
component of this filter is the unscented transformation which 
uses a set of approximately chosen weighted points to 
parameterize the means and covariances of probability 
distributions [9]. 

This paper is systematized in 6 sections. In section 2, SINS 
error models are presented with definitions of the frames of 
reference used. Error models are derived for space-stabilized 
mechanization. Integrated navigation system configuration is 
presented and the system dynamic and measurement models 
are elaborated in section 3. This section also presents an 
algorithm for estimation of SINS axes misalignment angles. 
Section 4 deals with the UKF algorithm for integration and its 
implementation remuneration. Simulation is carried out for the 
ballistic missile application and powered phase trajectory data 
is used.  The correction of velocity errors induced by attitude 
errors is mentioned. Simulation minutiae and results are 
presented in section 5. This paper is concluded in section 6. 
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2. SINS ERROR MODEL 

2.1 Coordinate Frames 
 
Coordinate frames used in this paper are defined as follows [3] 

a. Inertial frame (i-frame) 
b. Navigation frame (n-frame) 
c. Launch inertial frame (il-frame) 
d. Body frame (b-frame) 
e. Observed star frame (j-frame) 

   The i-frame has its origin at earth center with z-axis 
normal to the equatorial plane, x-axis in equatorial plan and 
y-axis complements the right handed system. The n-frame is a 
local level frame with z-axis parallel to the upward vertical, 
x-axis points eastward and y-axis points northward. The 
il-frame has its origin at the launch point. It is a local level 
frame (i.e. x and y axes form 
a level plane) while y-axis 
aims towards the expected 
target. In b-frame of the 
vehicle, x-axis is along 
longitudinal axis, z-axis is 
perpendicular to longitudinal 
plan of symmetry and y-axis 
complements the right 
handed system. We assume a 
j-frame for the jth observed 
star that has been identified 
as guide star in the reference 
star catalog. Figure 1 depicts the relationship between i and j 
frame. The angles jΘ  and jΓ  represent jth star’s right 
ascension and declination respectively. 

2.2 Attitude Error Model 
 

In this paper, space-stabilized mechanization is used for the 
SINS. It is conceptually the simplest of all possible system 
implementations, since Newton’s laws are most simply stated 
in an inertial frame of reference. The space-stabilized inertial 
navigation system outputs navigation parameters in an 
inertially non-rotating frame [4]. Thus, this mechanization is 
free of Earth’s rotation and transport rate. In this perspective, 
attitude error can simply be articulated as 

( )il b b
bC wφ ε= +  (1) 

where φ  represents SINS axes misalignment error or attitude 

error; il
bC  is transformation matrix between indicated frames; 

ε and w  denote gyros constant and random drifts 
respectively. Equation (1) can also be written as 
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2.3 Velocity and Position Error Model 

Velocity error equation in the space-stabilized 
mechanization is given as 

( )il il il il b b il
bv f C gδ φ υ δ= × + ∇ + +  (3) 

where f  is the specific force measured by accelerometers; 
gδ  is the acceleration error due to gravity; ∇  and υ   

represent accelerometer constant and random bias 
respectively. 

In this paper, ellipsoidal Earth model is assumed for which 
gravity vector in the reference navigation frame is expressed 
as [4] 
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where µ = product of the Earth’s mass and universal 

gravitational constant = 7 14 3 2(3.9860305 3 10 ) 10 [ / s ]m−± × ×  

r = geocentric position vector magnitude = 2 2 2i i i
x y zr r r+ +  

2J  = a constant coefficient = 3(1.08230 0.0002) 10−± ×  

er = the Earth’s equatorial radius = 6378137[m]  

, ,i i i
x y zr r r  = components of geocentric position vector 
il
iC  is the transformation matrix between indicated frames 

Hence, acceleration error due to gravity can be expressed as 
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Position error equation in rectangular coordinates is given as 
il ilr vδ δ=  (6) 

3. INTEGRATED NAVIGATION SYSTEM 

3.1. Configuration 
The configuration of integrated system is depicted in Fig. 2. 

Here, stars observations are made by CCD star sensors, 
generating a two dimensional image of a small section of the 
sky. The image output from the camera goes to the onboard 
computer. Computer programs, through some video 
thresholding schemes, limit the number of stars in a field that 
will be processed. Stored in the computer memory is a star 
catalog with the celestial coordinates of each star, in some 
reference system, which will be used for star field recognition 
through some image matching techniques [3].  

To trim down cost and size, and to improve consistency, an 
advanced configuration utilizes a star sensor rigidly mounted 
on the strapdown IMU. This arrangement has become viable 
through technology advances and computing power. In this 
case, image is not stabilized on the focal plane; rather, it is 
computationally stabilized. The fully strapdown configuration 
requires the use of a very wide FOV telescope. The size of the 
focal plane array must be coherent with the FOV requirements. 
The contents of onboard star catalog are significantly 
increased as compared to platform configuration. In this 
system, the best configuration is to use two star sensors and 
associated electronics with a dedicated microprocessor [5]. 
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Fig. 2 SINS/ANS integrated navigation system 
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Fig. 1 Inertial and star frame 
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3.2 SINS Axes Misalignment Angles 

Suppose j
jr  represents unit position vector of the jth star 

projected into j-frame, then its transformation into i-frame 
using star’s right ascension and declination yields 

ji i
j j jr C r=  (7) 

From the image projection geometry on two dimensional 
plane as shown in Fig. 3, we get star’s bearing and elevation 
angles in the star sensor frame. 

Negative x-y 
Image Plane

Lens

f

ix

iy

iz

sx
sy

j
jr

jS

szx
y

jΘ

jΓ

 
Fig. 3 Star’s projection geometry 

As we know the orientation of the sensor with respect to body 
frame, we get jth star unit position vector in body frame as 

jb b s
j s j jr C C r=  (8) 

Estimated star’s position vector in the navigation frame is 
ˆ p pil b
j jj br r C r= =  (9) 

where p represents mathematical platform frame and p
bC  is 

the estimated attitude matrix from SINS. 
For small angle approximations, the relationship between the 
mathematical platform frame and the reference navigation 
frame is as follows 
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Unit position vector of the jth star in p frame can also be 
expressed as 

( )p p i i
j jj ir C r I r= = −Φ  (11) 

If there are n number of stars in the FOV of the star sensor, 
Eqs. (9) and (11) can be equated to get the following 
relationship 

1 21 2 . . . ( ) . . .p p p i i i
n nr r r I r r r⎡ ⎤ ⎡ ⎤= −Φ ⎣ ⎦⎣ ⎦  (12) 

In simplified form Eq. (12) can be written as 
( )p iR I R= −Φ  (13) 

where 1 2 3 . .p p p p
p NR r r r r⎡ ⎤= ⎣ ⎦  and  

       1 2 3 . .i i i i
i NR r r r r⎡ ⎤= ⎣ ⎦  

From Eq. (13) we get axes misalignment matrix as  
1ˆ ( )T T

p i i iI R R R R −Φ = −  (14) 

3.3 Dynamical and Measurement Model of the System 
 The nonlinear system’s dynamic and observation equations 
for the Kalman filter in discrete form are given as [6] 

1 1 1( , 1) , 0,1,..,
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k k k k
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x f x k G w k
z h x ϑ

− − −= − + =
= +

 (15) 

where () n n
kf

×∈  is the process model; n
kx ∈  is the 

state vector; kG  is the system noise matrix; n
kw ∈  is the 

system noise; p
kz ∈  is the measurement vector; 

() p n
kh ×∈  is the measurement model and p

kϑ ∈  is the 
measurement noise. We assume that noise is uncorrelated 
Gaussian white noise sequences with mean and covariances as 
follows: 

{ } 0; { }i i j ijE w E w w Qδ= =  

{ } 0; { }i i j ijE E Rϑ ϑϑ δ= =  

{ } 0i jE wϑ = , for all ,i j  

where {}E ⋅  denotes the expectation, and ijδ  is the 
Kronecker delta function. 
Q and R are bounded positive definite matrices (Q>0, R>0). 
Initial state 0x  is normally distributed with zero mean and 
covariance 0P . 
 In our system, dynamical model of the system is defined by 
the error differential Eqs. (2), (3) and (6). System’s 
transition matrix and the system and measurement noise 
covariance matrices are transformed to discrete form for 
implementation. System state vector used is as below 

, , , , , , , , , , , , , ,
T

k x y z x y z x y z x y z x y zx v v v r r rφ φ φ δ δ δ ε ε ε⎡ ⎤= ∇ ∇ ∇⎣ ⎦  

Input noise matrix is 
6 6 9 6[ ;0 ]kG I × ×= , where I is the identity matrix 

The measurement vector is expressed as 
[ ]T

k x x y y z zz φ σ φ σ φ σ= + + +  

where ( , , )x y zσ σ σ represent attitude errors contribution from 
the astronavigation system. 

4. UNSCENTED FILTERING ALGORITHM 

4.1 The Choice of UKF 
The fundamental and imperative operation performed in all 

Kalman filters is the propagation of the Gaussian random 
variables through the system dynamics. For the nonlinear 
system applications, in the extended Kalman filter (EKF), the 
system state distribution and all relevant noise densities are 
approximated by these random variables, which are then 
propagated analytically through the first order linearization of 
the nonlinear system. This can lead into large errors in the true 
posterior mean and covariance of the transformed random 
variable, which may yield suboptimal performance and 
sometimes divergence of the filter. The UKF embarks upon 
this problem by using a deterministic sampling methodology. 
The state distribution is again approximated by a random 
variable but represented using minimal set of carefully chosen 
weighted sample points. These sample points completely 
capture the true mean and covariance of random variable, and 
when propagated through the true nonlinear system, captures 
the posterior mean and covariance for any nonlinearity. The 
EKF, on the contrary, only achieves the first order accuracy. 
Remarkably, the computational complexity of the UKF is the 
same order as that of EKF. What's more, realization of the 
UKF is often considerably easier and requires no analytic 
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derivation or Jacobians as in the EKF. The UKF methods has 
demonstrated to be far superior to standard EKF based 
estimation approaches in a wide range of applications in the 
areas of nonlinear state estimation [7,8]. 
4.2 The UKF Implementation Equations  

Following steps are followed for implementation of the 
UKF in the integrated navigation system [7-10]:  
a. Find weights for the states and covariance matrices as 

0
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where: 
sn  is the number of the states in the augmented state vector 

λ  is a scaling parameter = 2 ( )s sn nα κ+ − , where α  
determines how the sigma points are spread, typical value is 

310− ; κ  is a scaling parameter which can be used to 
incorporate up to fourth order precision in the transformation, 
usually set to zero. β  is used to incorporate knowledge of the 
distribution of states, optimal value for Gaussian distribution 
is 2; s and c in the subscript and superscript denote state and 
covariance respectively. 
b. Create a set of sigma points , 1i kχ −  with 1ˆkx − and 1kP − , 
using following set of equations 
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where: 
χ  is the sigma points of the augmented state vector, 

1kP −  is the old prediction of the covariance  
c. Prediction: The sigma points are then propagated through 
the nonlinear system and measurement models as 
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The prediction of the state and measurement vector as well 
covariance of the state vector is performed as 
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d. Update: Update the measurement prediction covariance, the 
cross covariance between the state and measurement, the 
Kalman gain, the state estimate and the state covariance as 
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e. The processing for the current epoch is completed. Return 
to step b to process for the next epoch. 

The block diagram of the UKF implementation algorithm is 
shown in Fig. 4.  
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Fig. 4 The UKF algorithm 

5. SIMULATION AND RESULTS 
The discrete UKF realization used in this paper is the direct 

feedback where the estimated errors are fed back to the SINS, 
thus minimizing the evolution of the observed errors those are 
to be delivered as an observation to the Kalman filter [2]. In 
this simulation, quaternion is obtained from the corrected 
attitude matrix and is fed back for attitude error compensation. 

Parameters of a medium accuracy SINS are used for 
initialization of the UKF. ANS augmentation comes into 
effective 40 seconds after lift off of the missile when it attains 
altitude above 22 km from onwards stars are visible 
unhindered [11]. SINS computations are carried out at 80 Hz 
while ANS aiding is provided at 1 Hz. Simulation is carried 
out for the powered flight trajectory of the ballistic missile as 
shown in Fig. 5. 

 
The results for the UKF estimated axes misalignment 

angles and the gyros drifts are shown in Figs. 6 and 7 
respectively. 

In the SINS/ANS integrated navigation system, 
observability of the velocity and position errors is poor. From 
the simulation, we estimate axes misalignment angles and the 
constant gyros drifts. The drift represents gyro turn-on to 
turn-on constant drift which is estimated using ANS aiding. 
Thus, from the observable attitude errors states, we can 
estimates and compensate for the velocity as well as position 
errors that occur due to the axes misalignments. This 

Fig. 5 Missile’s powered flight trajectory 
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compensation takes place when the vehicle is out of 
atmosphere and the astronavigation comes into effect. The 
velocity errors caused by axes misalignment angles before and 
after the ANS aiding are shown in Fig. 8. 

6. CONCLUSIONS 
 Astronavigation aiding for SINS is an attractive solution 
for in-flight estimation and compensation of navigation errors 
arising from gyros drift. In this paper, for reliable targeting of 
guided munitions, an accurate modeling of the Earth’s 
gravitational filed is employed that is nonlinear in nature. The 
UKF implementation solves this nonlinear state estimation 
problem in an elegant way without approximations loss. 
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Fig. 6 The UKF estimated axes misalignment angles 

Fig. 7 The UKF estimated gyros drifts 

 
Fig. 8 The ANS aided velocity errors compensation 

245


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print



