• Title/Summary/Keyword: Integrated Coupling Method

Search Result 81, Processing Time 0.022 seconds

Simulation of non-Gaussian stochastic processes by amplitude modulation and phase reconstruction

  • Jiang, Yu;Tao, Junyong;Wang, Dezhi
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.693-715
    • /
    • 2014
  • Stochastic processes are used to represent phenomena in many diverse fields. Numerical simulation method is widely applied for the solution to stochastic problems of complex structures when alternative analytical methods are not applicable. In some practical applications the stochastic processes show non-Gaussian properties. When the stochastic processes deviate significantly from Gaussian, techniques for their accurate simulation must be available. The various existing simulation methods of non-Gaussian stochastic processes generally can only simulate super-Gaussian stochastic processes with the high-peak characteristics. And these methodologies are usually complicated and time consuming, not sufficiently intuitive. By revealing the inherent coupling effect of the phase and amplitude part of discrete Fourier representation of random time series on the non-Gaussian features (such as skewness and kurtosis) through theoretical analysis and simulation experiments, this paper presents a novel approach for the simulation of non-Gaussian stochastic processes with the prescribed amplitude probability density function (PDF) and power spectral density (PSD) by amplitude modulation and phase reconstruction. As compared to previous spectral representation method using phase modulation to obtain a non-Gaussian amplitude distribution, this non-Gaussian phase reconstruction strategy is more straightforward and efficient, capable of simulating both super-Gaussian and sub-Gaussian stochastic processes. Another attractive feature of the method is that the whole process can be implemented efficiently using the Fast Fourier Transform. Cases studies demonstrate the efficiency and accuracy of the proposed algorithm.

A Study About Grid Impose Method On Real-Time Simulator For Wind-Farm Management System (풍력발전단지 관리·분석 시스템의 Real-Time Simulator 도입을 위한 계통모델 연동방안 연구)

  • Jung, Seungmin;Yoo, Yeuntae;Kim, Hyun-Wook;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.28-37
    • /
    • 2015
  • Owing to the variability of large-scaled wind power system, the development of wind farm management technologies and related compensation methods have been receiving attention. To provide an accurate and reliable output power, certain wind farm adopts a specified management system including a wind prediction model and grid expectation solutions for considering grid condition. Those technologies are focused on improving the reliability and stability issues of wind farms, which can affect not only nearby system devices but also a voltage condition of utility grid. Therefore, to adapt the develop management system, an expectation process about voltage condition of Point of Common Coupling should be integrated in operating system for responding system requirements in real-time basis. This paper introduce a grid imposing method for a real-time based wind farm management system. The expected power can be transferred to the power flow section and the required quantity about reactive power can be calculated through the proposed system. For the verification process, the gauss-seidel method is introduced in the Matlab/Simulink for analysing power flow condition. The entire simulation process was designed to interwork with PSCAD for verifying real power system condition.

Fabrication and characterization of XPM based wavelength converter module with monolithically integrated SOA's (SOA 집적 XPM형 파장변환기 모듈 제작 및 특성)

  • 김종회;김현수;심은덕;백용순;김강호;권오기;엄용성;윤호경;오광룡
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.509-514
    • /
    • 2003
  • Mach-Zehnder interferometric wavelength converters with monolithically integrated semiconductor optical amplifiers (SOA's) have been fabricated and characteristics of wavelength conversion at 10 Gb/s have been investigated for wavelength span of 40 nm. The devices have been achieved by using a butt-joint combination of buried ridge structure type SOA's and passive waveguides. In the integration, a new method has been applied that removes p+InP cladding layer leading to high propagation loss and forms simultaneously the current blocking and the cladding layer using undoped InP. The module packaging has been achieved by using a titled fiber array for effective coupling into the tilted waveguide in the wavelength converter. Using the module, wavelength conversion with power penalty lower than 1 ㏈ at 10 Gb/s has been demonstrated for wavelength span of 40 nm. In addition, it is show that the module can provide 2R (re-amplification, re-shaping) operation by demonstrating the conversion with the negative penalty.

Observability Analysis of INS/GNSS System for Vehicles Moving with a Large Pitch Angle Change (피치각 변화가 큰 궤적에서의 INS/GNSS 통합항법 시스템 가관측성 분석)

  • Kim, Hyun-seok;Baek, Seung-jun;Kim, Hyung-Soo;Jo, Min-Su
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2018
  • The most widely used method for constructing an inertial navigation system (INS)/global navigation satellite system (GNSS) coupling system is to construct an integrated navigation system using a Kalman filter. However, depending on the trajectory, non-observable state variables may be generated. In this case, the state variables are not estimated. To solve this problem, a integrated navigation system is constructed and then an observability analysis is performed. In this paper, a 24th order position-matched Kalman filter is defined to design an INS/GNSS integrated navigation system for vehicles moving with a large pitch angle change. To verify the appropriateness of the error state variables applied to the Kalman filter, an observability analysis was performed. The trajectory was divided into five segments, and the piece-wise constant system (PWCS) was assumed for each segment, and the results were analytically analyzed. The analytical results and the simulation results confirm that the error state parameters of the Kalman filter are well-designed to the estimation side.

SOA-based Integrated U-City Service Architecture (SOA 기반의 U-City 서비스 통합 아키텍처)

  • Lee, Kang-Pyo;Lim, Young-Seok;Ahn, Jae-Min;Yoo, Jin-Soo;Kim, Hyoung-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • SOA (Service-Oriented Architecture), which has become very popular recently, is a new paradigm for software development and application. In this paper, we propose an integrated architecture which is able to effectively manage and control a variety of services for U-City projects focusing on the importance of service integration. SOA has a number of important features such as loose coupling, standard bases, and distributed computing, all of which are the essential elements for merging and providing various services in U-City projects. We exploit the ESB (Enterprise Service Bus) for reflecting those features, which is a core module linking mutually heterogeneous components so that the communication of services can be implemented. In this paper, we discuss the necessity of SOA in U-City services and a possible scenario and method for the implementation. Finally, we propose an integrated architecture for the U-City Integration and Management Center.

A study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System

  • Lee, Soo-Cheol;Park, Seok-Sun;Lee, Jeh-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.62-66
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the learning control field was learning in robots doing repetitive tasks such as an assembly line works. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown for the iterative precision of each link.

A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System (수직다물체시스템의 간접적응형 분산학습제어에 관한 연구)

  • Lee Soo Cheol;Park Seok Sun;Lee Jae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

Optimized Land Use by Integrated Use of Fuzzy-LP and GIS (Fuzzy-LP와 GIS의 결합을 통한 토지의 최적 이용문제)

  • 전철민
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.273-282
    • /
    • 2002
  • Although the influence of GIS has been proved in a variety of applications, there also have been some research issues about that the coupling of GIS with other mathematical or engineering tools is necessary to meet various needs of specialized problem domains. Linear Programming, a mathematical technique used in optimal distribution of given quantity, can enhance its usability by integrating with GIS since LP basically does not include means to deal with spatial data. The limitation of the traditional LP technique is that it requires explicitly defined conditions, which is impractical or impossible in such decision making processes as in land use problems that use less crisp decision factors. This study develops a method to incorporate such fuzzy situations by integrating Fuzzy-LP that employs fuzzy logic and GIS. The GIS provides data to or displays data from the Fuzzy-LP processes in the integrated system. This methodology is illustrated to solve a land use distribution problem.

AHP-Based Determination of Warning Grade in a Warranty Claims (AHP-기반으로 보증클레임의 위험등급 결정)

  • Na, Choon-Soo;Jung, Byeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5097-5106
    • /
    • 2010
  • Two perspectives on developing better decision capabilities for a warranty system can be identified: one involving the inclusion of a 'learning' module and the other the inclusion of a 'prioritization' capability. This paper demonstrates how a warning process can be included in a warranty system by coupling with a neural network's learning capabilities. In addition to the neural network, a method is employed for assigning priorities to warning criteria by using the analytic hierarchy process (AHP). Thus, it is possible to construct an integrated system with three components: the warranty system, the AHP module, and the neural network system. A case study is provided to enhance the accuracy of warning/detection judgment in a warranty system for automobile companies, having many factors related to the warranty system.