• Title/Summary/Keyword: Integral equation method

Search Result 607, Processing Time 0.029 seconds

Numerical Simulation of Acoustic Field Interacting between a Vortex Ring and a Rigid Sphere (원형 고리와와 강체구의 상호작용에 의한 음향장 수치해석)

  • 유기완;이덕주
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.215-222
    • /
    • 1997
  • The flow and acoustic fields due to a vortex ring interaction with a rigid sphere are simulated numerically. The flow field is regarded as three-dimensional inviscid and incompressible. The vorticity is assumed to be concentrated inside the finite core of vortex filament. The vortex filament curve, described by parabolic blending curve function, is used to effectively solve the modified Biot-Savart equation. The interaction between a vortex ring and a rigid sphere using the parabolic blending curve is calculated. The trajectory of the vortex ring is obtained with several different initial positions between the ring and the sphere. The force variations acting on the sphere are calculated by using the boundary integral method. Finally, we can also obtain the acoustic signals at the far field observation positions from the force variations acting on the rigid surface. We can find that the dipole axis of the directivity patterns are rotated during the interacting phenomena.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

EWM-MR chart for individual measurements in start-up process (초기공정에서 개별관측치를 이용한 EWM-MR 관리도)

  • 지선수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.211-218
    • /
    • 1998
  • In start-up process control applications it may be necessary to limit the sample size to one measurement. A control chart for individual measurements is used whenever it is desirable to examine each individual value from the process immediately. A possible option would be to use an exponential weighted moving(EWM), using modifying statistics with individual measurement, chart for monitoring the process center, and using a moving range (MR) chart for monitoring process variability. In this paper it is shown that there is scheme in using the EWM procedure based on average run length. An expression for the ARL is given in terms of an integral equation, approximated using numerical quadrature. In this case, where it is reasonable to assume normality and negligible autocorrelation in the observations, provide graphs that simplify the design of EWM-MR chart and taking method of exponential smoothing constant(λ) and constant(K) are suggested. The charts suggested above evaluate using the conditional probability.

  • PDF

Forced Resonant Type Cutoff Cavity-Backed Slot Antenna Elements for Electromagnetic Power Transmission

  • Kim, Ki-Chai;Kwon, Ick-Seung
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • This paper presents the basic characteristics of a cutoff cavity-hacked slot antenna, for the application of spacetenna, with a feed post and a parasitic post inserted parallel to the slot. This type of antenna might effectively excite the slot and forcibly resonate the cavity by adding external reactance to the parasitic post. The Galerkin\`s method of moments is used to analyze integral equations for the unknown electric current on each post and electric field in the slot. The value of external reactance for forced resonance is discussed by deriving a determining equation, the current distribution on each post and the radiation patterns are considered. The analysis is in excellent agreement with the experiment for the radiation patterns.

  • PDF

Weak forms of generalized governing equations in theory of elasticity

  • Shi, G.;Tang, L.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.329-337
    • /
    • 2008
  • This paper presents the derivation of the generalized governing equations in theory of elasticity, their weak forms and the some applications in the numerical analysis of structural mechanics. Unlike the differential equations in classical elasticity theory, the generalized equations of the equilibrium and compatibility equations presented here take the form of integral equations, and the generalized equilibrium equations contain the classical differential equations and the boundary conditions in a single equation. By using appropriate test functions, the weak forms of these generalized governing equations can be established. It can be shown that various variational principles in structural analysis are merely the special cases of these weak forms of generalized governing equations in elasticity. The present weak forms of elasticity equations extend greatly the choices of the trial functions for approximate solutions in the numerical analysis of various engineering problems. Therefore, the weak forms of generalized governing equations in elasticity provide a powerful modeling tool in the computational structural mechanics.

An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

  • Jin, Taekyeong;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.136-140
    • /
    • 2018
  • We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS) model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

Estimation of Joint Size Distribution Using a Contained Trace Length Distribution in a Cylindrical Window (원통형 조사창에서의 양끝내포선 길이분포를 이용한 절리크기분포 추정 연구)

  • Suh, Ga Hyun;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.201-211
    • /
    • 2016
  • A method for estimating rock joint size distribution using contained traces length distribution from 3D cylindrical window survey was suggested. To reduce the numerical error, an improved technique was applied. The accuracy was verified by referring to Monte-Carlo simulation and it was found that the error can be decreased with suitable gamma values.

A Study of Matimum Run-up Heights of Periodic Waves (주기파의 최대 처오름높이에 관한 연구)

  • Jo, Yong-Sik;Lee, Bong-Hui
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.649-655
    • /
    • 1999
  • The maximum run-up heights of periodic waves are numerically investigated in this study. Incident waves are sinusoidal and enoidal waves. The maximum run-up height of enoidal wave approaches that of sinusoidal wave as the wave length decreases, while it approaches that of solitary wave as the wave length increases. If wave height is fixed, the maximum run up heights of enoidal waves are always greater than those of sinusoidal waves but smaller than those of solitary waves.

  • PDF

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF

Reverse Drift Force of a Floating 2D-BBDB Wave Energy Absorber (2D-BBDB형 파 에너지 흡수장치 에 작용하는 음의 시간평균 파 표류력 해석)

  • Hong, Do-Chun;Hong, Sa-Young;Hong, Seok-Won;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.187-191
    • /
    • 2003
  • The motion and time-mean drift force of a 2-D floating BBDB in waves are studied with and without taking account of fluctuating air pressure in the air chamber. It has been found numerically that the drift for a of the BBDB is in the reverse direction of propagation of the incident waves over specific frequency ranges as found by McCormick through his experiment work. The drift force is calculated by Pinkster's near-field method. Since Maruo's formula method for the drift force is always positive, Maruo's formula is only approximate and should be replaced by the correct near-field method.

  • PDF