• Title/Summary/Keyword: Integral calculation

Search Result 275, Processing Time 0.029 seconds

Development of Shielding Analysis System for the Reactor Vessel by $R-{\theta}$ Coordinate Geometry ($R-{\theta}$ 좌표계에 의한 원자로 압력용기 차폐해석체계 개발)

  • Kim, Ha-Yong;Koo, Bon-Seung;Kim, Kyo-Youn;Lee, Chung-Chan;Zee, Sung-Quun
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • A new developing reactor isn't fixed the structure and the materials of reactor components. To perform the shielding analysis for a reactor vessel by $R-\theta$ geometry, it takes much effort and time to modeling of source term according to the change of reactor components every time. Therefore, we developed the shielding analysis system for the reactor vessel by $R-{\theta}$ geometry, which wasn't affected by the reactor core geometry. By using the developed shielding analysis system, we performed the shielding analysis for the reactor vessel of an integral reactor which has the hexagonal geometry of nuclear fuel assemblies in reactor core. We compared the results obtained from the developed system with those obtained from MCNP analysis. Because the results of developed shielding analysis system were more conservative than those of MCNP calculation, it is useful for shielding analysis. As we had developed the new shielding analysis system for a reactor vessel by $R-{\theta}$ geometry, we reduced error of model for reactor core which was formerly designed by hand and saved the time and the effort to design source term model of reactor core.

AN EXPERIMENTAL STUDY WITH SNUF AND VALIDATION OF THE MARS CODE FOR A DVI LINE BREAK LOCA IN THE APR1400

  • Lee, Keo-Hyoung;Bae, Byoung-Uhn;Kim, Yong-Soo;Yun, Byong-Jo;Chun, Ji-Han;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.691-708
    • /
    • 2009
  • In order to analyze thermal hydraulic phenomena during a DVI (Direct Vessel Injection) line break LOCA (Loss-of-Coolant Accident) in the APR1400 (Advanced Power Reactor 1400 MWe), we performed experimental studies with the SNUF (Seoul National University Facility), a reduced-height and reduce-pressure integral test loop with a scaled down APR1400. We performed experiments dealing with eight test cases under varied tests. As a result of the experiment, the primary system pressure, the coolant temperature, and the occurrence time of the downcomer seal clearing were affected significantly by the thermal power in the core and the SI flow rate. The break area played a dominant role in the vent of the steam. For our analytical investigation, we used the MARS code for simulation of the experiments to validate the calculation capability of the code. The results of the analysis showed good and sufficient agreement with the results of the experiment. However, the analysis revealed a weak capability in predicting the bypass flow of the SI water toward the broken DVI line, and it was insufficient to simulate the streamline contraction in the broken side. We, hence, need to improve the MARS code.

Efficient Iterative Physical Optics(IPO) Algorithms for Calculation of RCS (RCS 계산을 위한 효율적인 IPO 계산 방법)

  • Lee, Hyunsoo;Jung, Ki-Hwan;Chae, Dae-Young;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2014
  • The IPO(Iterative Physical Optics) method repeatedly applies the well-known PO(Physical Optics) approximation to calculate the scattered field by a large object. Thus, the IPO method can consider the multiple scattering in the object, which is ignored for the PO approximation. This kind of iteration can improve the final accuracy of the induced current on the scatterer, which can result in the enhancement of the accuracy of the RCS(Radar Cross Section) of the scatterer. Since the IPO method can not exactly but approximately solve the required integral equation, however, the convergence of the IPO solution can not be guaranteed. Hence, we apply the famous techniques used in the inversion of a matrix to the IPO method, which include Jacobi, Gauss-Seidel, SOR(Successive Over Relaxation) and Richardson methods. The proposed IPO methods can efficiently calculate the RCS of a large scatterer, and are numerically verified.

Computational Complexity of BiCGstab(l) in Multi-Level Fast Multipole Method(MLFMM) and Efficient Choice of l (MLFMM(Multi-Level Fast Multipole Method) 방법에 적용된 BiCGstab(l)반복법의 l값에 따른 연산량 분석 및 효율적인 l값)

  • Lee, Hyunsoo;Rim, Jae-Won;Koh, Il-Suek;Seo, Seung-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.167-170
    • /
    • 2018
  • The method of moments(MoM) is one of the most popular integral-equation-based full-wave simulation methods, and the multi-level fast multipole method(MLFMM) algorithm can be used for its efficient calculation. When calculating the surface current on the large scatterer in the MoM or MLFMM, iterative methods for the final matrix inversion are used. Among them, BiCGstab(l) has been widely adopted due to its good convergence rate. The number of iterations can be reduced when l becomes larger, but the number of operations per iteration is increased. Herein, we analyze the computational complexity of BiCGstab(l) in the MLFMM method and propose an optimum choice of l.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구)

  • Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder (비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.234-242
    • /
    • 2017
  • This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

Comparative Study of LC Scheme with Some Conventional Schemes by Truncation Error Analysis (선형특성 (LC) 법과 그 외 고전적 방법들과의 절단오차 분석에 의한 비교연구)

  • Kim, Chan-Hyeong;Kim, Jong-Kyung;Yook, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.179-188
    • /
    • 1988
  • A recently developed spatial differencing scheme, Linear Characteristic (LC) scheme is compared with some traditionally used schemes such as Step Difference (SD), Diamond Difference (DD), and Step Characteristic (SC) scheme by analyzing the truncation error calculated numerically in slab geometry. Those four candidate schemes are applied to one simple source sink problem and two criticality problems (one is calculation of multiplication factor and the other is slab critical half thickness). The calculated results are then examined by some equitable measures of error. It is concluded that the LC scheme is terribly more powerful than any other candidate scheme that has been prevalent up to the present time. Moreover, the LC scheme estimates integral parameter such as multiplication factor and critical half thickness much more efficiently than SD or SC scheme. This is due to the fact that the fortuitous error cancellation, which occurs when the deviations of cell average flux are summed over the whole gamut of spatial meshes, happens much more favorably to the LC scheme.

  • PDF

An estimate of structure-borne sound by the excitation at an arbitrary point on the rectangular plate with fixed edges (주변고정 장방형 평판에 있어서 임의점 가진에 의한 고체전파음의 예측)

  • 김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 1988
  • Machinery enclosures are widely adopted to reduce the noise emission in various fields of application. Emitted noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound with different path of propagation. One is the "structure-borne sound", while the other is "air-borne sound". In order to get a most efficient machinery enclouser a prudent consideration upon the above structure-borne and air-borne sound is required, as the guiding principle of contermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subjects for the structure-borne sound, and the specifications of absorbing members and damping panels are the major related matters for the air-borne sound. Hence, it seems very efficient to separate the total sounds into two categories with a great accuracy when one think of further reduction of noise from the existing enclosure, although its separating methods have not been made clear for many years. Author proposes an application method of experimental modal analysis to extract the structure-borne sound from the measured total radiation sound, as the air-borne sound is deduced by the vectorial difference between the measured total radiation sound and the calculated structure-borne sound. In order to calculate the correct structure-borne sound by the excitation at an arbitrary point on the enclosure structure, it is important to decide 1) how to estimate the enclosure's surface vibration velocity and 2) how to compute the radiation sound which is considered as the effect of vibration modes of enclosure surface. The former can be solved with total frequency response function calculated by the application of experimental modal analysis. The latter is to be solved by the author's new approaches for radiation sound computation by means of the Rayleigh's integral equation and the boundary-element method applied complex surface vibration velocity. As a first step, structure-borne sound by the excitation at an arbitry point on the rectangular plate with fixed edges, has been calculated to verified the reliability of the developed computation methods. The results of calculation show good agreements with those of the actual measurements.actual measurements.

  • PDF

Mid-high frequency ocean surface-generated ambient noise model and its applications (중고주파 해수면 생성 배경소음 모델과 응용)

  • Lee, Keunhwa;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.340-348
    • /
    • 2016
  • Ray-based model for the calculation of the ocean surface-generated ambient noise coherence function has the form of double integral with respect to a range and a bearing angle. While the theoretical consideration about its numerical implementations was partly given in the past work of authors, the numerical results on the ocean environment have not been presented yet. In this paper, we perform numerical experiments for shallow and deep water environments. It is shown that the coherence function depends on the ocean sediment sound speed, and is more sensitive to the ocean sediment sound speed in the shallow water than in the deep water. Similar trend is also observed for varying the orientation of hydrophone pair. In addition, a post-processing technique is proposed in order to plot the noise intensity for the noise receiving angle. This procedure will supplement the weakness of the ray-based model about the output data type compared to the semi-analytic model of Harrison.