• Title/Summary/Keyword: Integral calculation

Search Result 275, Processing Time 0.024 seconds

Elastic Plastic Finite Element Calculation of Standard Fracture Toughness Specimens (표준 파괴인성시험편에 대한 탄소성 유한요소해석)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 1994
  • The purpose of this study is elastic plastic finite element analysis for standard fracture toughness specimens. The principles of elastic-plastic fracture mechanics are shortly summarized and the special requirements for computational tools are derived. Possibilities to model the crack tip singularities are mentioned. The relevant fracture parameters like J-Integral and COD and their correlation are evaluated from elastic plastic finite element calculations of standard fracture toughnes specimens. The size and form of the plastic zone are shown. The comparion between experiment and caculation is discussed as well as the application of the limit load analysis.

  • PDF

An Application of the Matrix Partitioning for the Motion Analysis of Floating Bodies (부유체 운동해석을 위한 부분행렬 이용방법)

  • 김동준;윤길수
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.1
    • /
    • pp.129-138
    • /
    • 1986
  • A matrix partitioning method is proposed for the 2-D motion analysis of floating bodies. For the numerical solution, the boundary of a floating body is approximated with a series of line segments and the governing integral equation is transformed into a system of linear equations. A new solution procedure of resulting linear equation with complex coefficients is formulated and programmed using a matrix partitioning scheme and the Choleski decomposition. From the case study, it is found that the proposed method is efficient in the motion analysis of floating bodies, especially in the calculation of hydrodynamic coefficients. Also, it requires smaller memory size and less computing time compared with conventional methods.

  • PDF

A simple method to optimize DC-bus capacitor in 3-phase shunt Active power filter system

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.367-368
    • /
    • 2015
  • This paper introduces a shunt active power filter with a small DC bus capacitor by adding additional low-pass filter (LPF). The DC link voltage fluctuation is impressively suppressed with a small value in spite of the low value of DC-link capacitor under the steady-state condition. Consequently, the cost and volume of power converter are significantly reduced thanks to the reduced value of DC-bus capacitor. On the other hand, an indirect control strategy is used to maintain grid-side current when non-linear loads are connected to the system. By using proportional-integral (PI) and modified repetitive controller (RC) in dq0 frame, the calculation time is greatly decreased by 6 times compared with the conventional RC, and the number of measurement devices is also minimized. As a result, the acquired total harmonic distortion (THD) is lower than 2% regardless of the load conditions. Simulation results are carried out in order to verify the effectiveness of the proposed control strategy.

  • PDF

RECENT UPDATES TO NRC FUEL PERFORMANCE CODES AND PLANS FOR FUTURE IMPROVEMENTS

  • Geelhood, Kenneth
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.509-522
    • /
    • 2011
  • FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions.

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.

A TIME DETERMINATION MODEL INCORPORATING RISK MANAGEMENT BASED ON MALAYSIAN CASE STUDIES

  • Sim Nee Ting;Chung Thing Chong
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.642-648
    • /
    • 2009
  • Determining the total duration for a construction project is an integral part of project management in the construction industry. This is to ensure the project and all its associated activities can be carried out and completed within the time frame stipulated. There are several commonly used scheduling methods and techniques in project management, some of which involves manual calculation while others involve computer software. This paper looks into the various time determination methods, extracting out their differences and similarities. It also seeks to draw out the problems when determining time for projects, especially those encountered of case studies. Based on the results from the case studies, there were delays on certain projects even though time determination had been carried out rigorously prior to the commencement of the projects. This paper seeks to develop a time determination model, which incorporates risk management techniques into the calculations in order to improve the method for time estimation to minimize the chances of project delay.

  • PDF

A Calculation of the Propagation for Focused Beams Using BPM (BPM을 이용한 안테나 배열의 집속 빔 전파 해석)

  • Kim Jaeheung;Cho Choon Sik;Lee Jae W.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.465-471
    • /
    • 2005
  • A method of calculation fur propagating and focusing of focused beams generated in antenna arrays, using BPM(Beam Propagation Method), is presented in this paper. Based on the diffraction theory, the beam focusing and Propagation is studied specially for the case of the antenna way fed by the Rotman lens that is able to focus microwave power on its focal arc or generate multiple beams. There are difficulties in performing a full-wave simulation using a commercial EM simulation tool for propagating and focusing of beams because of the structural complexity and the feeding assignment of the antenna array. Therefore, as an alternative solution, the BPM is presented to calculate the beam propagation from the aperture-type antennas. From the point of view of optics, the propagations of the lens have been simplified from the Fresnel diffraction integral to the Fourier transform. Using Fourier Transform, a beam propagation method is developed to show improvement of the resolution by controlling the wavefront of wave Propagating from an aperture-type antenna array. The beam width(or spot size) and the intensity are calculated for a focused beam propagating from an array having $10\lambda$ of its size. For the beams with $20\lambda,\;30\lambda$, and $50\lambda$ of geometrical focal length, the half-power beam widths(or spot size) are about 1.1\lambda,\;1.3\lambda,\;and\;1.9\lambda$ respectively.

Optimization of Dose Distribution for High Dose Rate Intraluminal Therapy (고선량율 관내 방사선치료를 위한 종양선량분포의 최적화에 대한 연구)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, Juhn-Kyu
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.243-252
    • /
    • 1994
  • The use of high dose rate remote afterloading system for the treatment of intraluminal lesions necessitates the need for a more accurate of dose distributions around the high intensity brachytherapy sources, doses are often prescribed to a distance of few centimeters from the linear source, and in this range the dose distribution is very difficult to assess. Accurated and optimized dose calculation with stable numerical algorithms by PC level computer was required to treatment intraluminal lesions by high dose rate brachytherapy system. The exposure rate from sources was calculated with Sievert integral and dose rate in tissue was calculated with Meisberger equation, An algorithm for generating a treatment plan with optimized dose distribution was developed for high dose rate intraluminal radiotherapy. The treatment volume becomes the locus of the constrained target surface points that is the specified radial distance from the source dwelling positions. The treatment target volume may be alternately outlined on an x-ray film of the implant dummy sources. The routine used a linear programming formulism to compute which dwell time at each position to irradiate the constrained dose rate at the target surface points while minimizing the total volume integrated dose to the patient. The exposure rate and the dose distribution to be confirmed the result of calculation with algorithm were measured with film dosimetry, TLD and small size ion chambers.

  • PDF

Analysis of the CREOLE experiment on the reactivity temperature coefficient of the UO2 light water moderated lattices using Monte Carlo transport calculations and ENDF/B-VII.1 nuclear data library

  • El Ouahdani, S.;Erradi, L.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Boulaich, Y.;Ahmed, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1120-1130
    • /
    • 2020
  • The CREOLE experiment performed In the EOLE critical facility located In the Nuclear Center of CADARACHE - CEA have allowed us to get interesting and complete experimental information on the temperature effects in the light water reactor lattices. To analyze these experiments with accuracy an elaborate calculation scheme using the Monte Carlo method implemented in the MCNP6.1 code and the ENDF/B-VII.1 cross section library has been developed. We have used the ENDF/B-VII.1 data provided with the MCNP6.1.1 version in ACE format and the Makxsf utility to handle the data in the specific temperatures not available in the MCNP6.1.1 original library. The main purpose of this analysis is the qualification of the ENDF/B-VII.1 nuclear data for the prediction of the Reactivity Temperature Coefficient while ensuring the ability of the MCNP6.1 system to model such a complex experiment as CREOLE. We have analyzed the case of UO2 lattice with 1166 ppm of boron in ordinary water moderator in specified temperatures. A detailed comparison of the calculated effective multiplication factors with the reference ones [1] in room temperature presented in this work shows a good agreement demonstrating the validation of our 3D calculation model. The discrepancies between calculations and the differential measurements of the Reactivity Temperature Coefficient for the analyzed configuration are relatively small: the maximum discrepancy doesn't exceed 1,1 pcm/℃. In addition to the analysis of direct differential measurements of the reactivity temperature coefficient performed in the poisoned UO2 lattice configuration, we have also analyzed integral measurements in UO2 clean lattice configuration using equivalency of the integral temperature reactivity worth with the driver core fuel reactivity worth and soluble boron reactivity worth. In this case both of the ENDF/B-VII.1 and JENDL.4 libraries were used in our analysis and the obtained results are very similar.

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.