• Title/Summary/Keyword: Integer Pel

Search Result 17, Processing Time 0.023 seconds

Efficient Integer pel and Fractional pel Motion Estimation on H.264/AVC (H.264/AVC에서 효율적인 정화소.부화소 움직임 추정)

  • Yoon, Hyo-Sun;Kim, Hye-Suk;Jung, Mi-Gyoung;Kim, Mi-Young;Cho, Young-Joo;Kim, Gi-Hong;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.123-130
    • /
    • 2009
  • Motion estimation (ME) plays an important role in digital video compression. But it limits the performance of image quality and encoding speed and is computational demanding part of the encoder. To reduce computational time and maintain the image quality, integer pel and fractional pel ME methods are proposed in this paper. The proposed method for integer pel ME uses a hierarchical search strategy. This strategy method consists of symmetrical cross-X pattern, multi square grid pattern, diamond patterns. These search patterns places search points symmetrically and evenly that can cover the overall search area not to fall into the local minimum and to reduce the computational time. The proposed method for fractional pel uses full search pattern, center biased fractional pel search pattern and the proposed search pattern. According to block sizes, the proposed method for fractional pel decides the search pattern adaptively. Experiment results show that the speedup improvement of the proposed method over Unsymmetrical cross Multi Hexagon grid Search (UMHexagonS) and Full Search (FS) can be up to around $1.2{\sim}5.2$ times faster. Compared to image quality of FS, the proposed method shows an average PSNR drop of 0.01 dB while showing an average PSNR gain of 0.02 dB in comparison to that of UMHexagonS.

Fast Block Matching Algorithm With Half-pel Accuracy for Video Compression (동영상 압축을 위한 고속 반화소 단위 블록 정합 알고리듬)

  • 이법기;정원식;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1697-1703
    • /
    • 1999
  • In this paper, we propose the fast block matching algorithm with half pel accuracy using the lower bound of mean absolute difference (MAD) at search point of half pel accuracy motion estimation. The proposed method uses the lower bound of MAD at search point of half pel accuracy which calculated from MAD's at search points of integer pel accuracy. We can reduce the computational complexity by executing the block matching operation only at the necessary search point. The points are selected when the lower bound of MAD at that point is smaller than reference MAD of integer pel motion estimation. Experimental results show that the proposed method can reduce the computational complexity considerably and keeping the same performance with conventional method.

  • PDF

A Fast Sub-pel Motion Estimation Scheme using a Parabolic SAD Model

  • Ahn, Sang-Soo;Lee, Bum-Shik;Kim, Mun-Churl;Park, Chang-Seob;Hahm, Sang-Jin;Cho, In-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.321-325
    • /
    • 2009
  • Sub-pel level motion estimation contributes to significant increase in R-D performance for H.264|MPEG 4 Part 10 AVC. However, several supplements, such as interpolation, block matching, and Hadamard transform which entails large computational complexity of encoding process, are essential to find best matching block in sub-pel level motion estimation and compensation. In this paper, a fast motion estimation scheme in sub-pel accuracy is proposed based on a parabolic model of SAD to avoid such computational complexity. In the proposed scheme, motion estimation (ME) is only performed in integer-pel levels and the following sub-pel level motion vectors are found from the parametric SAD model for which the model parameters are estimated from the SAD values obtained in the integer-pel levels. Fall-back check is performed to ensure the validity of the parabolic SAD model with the estimated parameters. The experiment result shows that the proposed scheme can reduce the motion estimation time up to about 30% of the total ME times in average with negligible amount of PSNR drops (0.14dB in maximum) and bit increments (2.54%in maximum).

  • PDF

Fast Uneven Multi-Hexagon-Grid Search Algorithm for Integer Pel Motion Estimation of H.264 (H.264 의 고속 정수 단위 화소 움직임 예측을 위한 개선된 Uneven Multi-Hexagon-grid 검색 알고리즘)

  • Lee In-Jik;Kim Cheong-Ghil;Kim Shin-Dug
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.153-156
    • /
    • 2006
  • 본 논문에서는 H.264 표준화 기구인 Joint Video Team(JVT) 권고안의 정수 단위 화소 움직임 예측을 위한 Unsymmetrical-cross Multi-Hexagon-grid Search(UMHexagonS) 알고리즘에서 Uneven Multi-Hexagon-grid Search(UMHGS) 부분을 개선한 알고리즘을 제안한다. 제안하는 알고리즘은 이전 프레임의 동일위치 또는 상위 모드에서 이미 선택된 움직임 벡터(MV: Motion Vector)를 이용하여 신호 대 잡음 비(PSNR: Peak Signal to Noise Ratio) 및 평균 비트 율(Average Bitrates)을 유지하면서, 현재 매크로블록의 검색영역을 줄이는 것이 가능하다. 제안하는 알고리즘의 성능은 Full Search Block Matching Algorithm(FSBMA) 및 UMHexagonS 알고리즘의 integer pel 에 대한 SAD(Sum of Absolute Difference) 연산횟수로 비교평가 하였다. 그 결과, FSBMA 에 비하여 평균 97.64%, UMHexagonS 에 비하여는 평균 17.48%의 연산횟수를 감소시키는 우수함을 보였다.

  • PDF

Integer-Pel Motion Estimation for HEVC on Compute Unified Device Architecture (CUDA)

  • Lee, Dongkyu;Sim, Donggyu;Oh, Seoung-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.397-403
    • /
    • 2014
  • A new video compression standard called High Efficiency Video Coding (HEVC) has recently been released onto the market. HEVC provides higher coding performance compared to previous standards, but at the cost of a significant increase in encoding complexity, particularly in motion estimation (ME). At the same time, the computing capabilities of Graphics Processing Units (GPUs) have become more powerful. This paper proposes a parallel integer-pel ME (IME) algorithm for HEVC on GPU using the Compute Unified Device Architecture (CUDA). In the proposed IME, concurrent parallel reduction (CPR) is introduced. CPR performs several parallel reduction (PR) operations concurrently to solve two problems in conventional PR; low thread utilization and high thread synchronization latency. The proposed encoder reduces the portion of IME in the encoder to almost zero with a 2.3% increase in bitrate. In terms of IME, the proposed IME is up to 172.6 times faster than the IME in the HEVC reference model.

Adaptive Search Range Decision for Accelerating GPU-based Integer-pel Motion Estimation in HEVC Encoders (HEVC 부호화기에서 GPU 기반 정수화소 움직임 추정을 고속화하기 위한 적응적인 탐색영역 결정 방법)

  • Kim, Sangmin;Lee, Dongkyu;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.699-712
    • /
    • 2014
  • In this paper, we propose a new Adaptive Search Range (ASR) decision algorithm for accelerating GPU-based Integer-pel Motion Estimation (IME) of High Efficiency Video Coding (HEVC). For deciding the ASR, we classify a frame into two models using Motion Vector Differences (MVDs) then adaptively decide the search ranges of each model. In order to apply the proposed algorithm to the GPU-based ME process, starting points of the ME are decided using only temporal Motion Vectors (MVs). The CPU decides the ASR as well as the starting points and transfers them to the GPU. Then, the GPU performs the integer-pel ME. The proposed algorithm reduces the total encoding time by 37.9% with BD-rate increase of 1.1% and yields 951.2 times faster ME against the CPU-based anchor. In addition, the proposed algorithm achieves the time reduction of 57.5% in the ME running time with the negligible coding loss of 0.6%, compared with the simple GPU-based ME without ASR decision.

Fast Integer-Pel Motion Estimation Based on Statistical Property for H.264/AVC (H.264/AVC를 위한 통계 특성 기반 정수 화소 단위 고속 움직임 예측 기법)

  • Noh, Jin-Young;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.669-678
    • /
    • 2012
  • In this paper, we propose an efficient fast integer-pel motion estimation for H.264/AVC using local statistics of local motion vectors. Using neighboring motion vectors, we define a new statistical property that is used to determine a mode of motion search range of current block. In addition, an adaptive motion search range compensated method that is based on cumulative statistics of previous coded blocks is addressed to solve the problem of the statistical motion search range decision method. Experimental results show that proposed algorithm has the capability to reduce the computational cost over the other methods.

Fast Motion Estimation for Variable Motion Block Size in H.264 Standard (H.264 표준의 가변 움직임 블록을 위한 고속 움직임 탐색 기법)

  • 최웅일;전병우
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.209-220
    • /
    • 2004
  • The main feature of H.264 standard against conventional video standards is the high coding efficiency and the network friendliness. In spite of these outstanding features, it is not easy to implement H.264 codec as a real-time system due to its high requirement of memory bandwidth and intensive computation. Although the variable block size motion compensation using multiple reference frames is one of the key coding tools to bring about its main performance gain, it demands substantial computational complexity due to SAD (Sum of Absolute Difference) calculation among all possible combinations of coding modes to find the best motion vector. For speedup of motion estimation process, therefore, this paper proposes fast algorithms for both integer-pel and fractional-pel motion search. Since many conventional fast integer-pel motion estimation algorithms are not suitable for H.264 having variable motion block sizes, we propose the motion field adaptive search using the hierarchical block structure based on the diamond search applicable to variable motion block sizes. Besides, we also propose fast fractional-pel motion search using small diamond search centered by predictive motion vector based on statistical characteristic of motion vector.

MOTION ESTIMATION ALGORITHM AND HARDWARE ARCHITECTURE FOR H.264/AVC (H.264/AVC 용 움직임 추정 알고리즘 및 하드웨어 구조)

  • 이재헌;이남숙
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.87-90
    • /
    • 2003
  • This paper presents a variable block size motion estimation (ME) algorithm and hardware architectures dedicated to H.264/AVC. Proposed ME architecture can achieve real-time processing for 720$\times$480@30Hz with search range of [-64, +63] in the horizontal and [-32, +31] in the vertical direction at integer-pel accuracy and upto 7 reference frames at the operating frequency of 54MHz.

  • PDF

A Low Memory Bandwidth Motion Estimation Core for H.264/AVC Encoder Based on Parallel Current MB Processing (병렬처리 기반의 H.264/AVC 인코더를 위한 저 메모리 대역폭 움직임 예측 코어설계)

  • Kim, Shi-Hye;Choi, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.28-34
    • /
    • 2011
  • In this paper, we present integer and fractional motion estimation IP for H.264/AVC encoder by hardware-oriented algorithm. In integer motion engine, the reference block is used to share for consecutive current macro blocks in parallel processing which exploits data reusability and reduces off-chip bandwidth. In fractional motion engine, instead of two-step sequential refinement, half and quarter pel are processed in parallel manner in order to discard unnecessary candidate positions and double throughput. The H.264/AVC motion estimation chip is fabricated on a MPW(Multi-Project Wafer) chip using the chartered $0.18{\mu}m$ standard CMOS 1P5M technology and achieves high throughput supporting HDTV 720p 30 fps.