A Fast Sub-pel Motion Estimation Scheme using a Parabolic SAD Model
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ABSTRACT around the best half pixel are also checked to tiedfinal
best matching pixel. This means that sub-pel levetion
estimation requires increased searching proceds Y6t
points. In addition, to construct the pixels at-pab levels,
interpolation operation is required which causemtoease
computational complexity. Table 1 shows a relapieetion
of computational complexity for integer-pel and i
motion estimations in time.

Sub-pel level motion estimation contributes to #igant
increase in R-D performance for H.264|MPEG 4 Part 1
AVC. However, several supplements, such as intatjooi,
block matching, and Hadamard transform which esntail
large computational complexity of encoding proces®
essential to find best matching block in sub-pelele
motion estimation and compensation. In this pap€iast
motion estimation scheme in sub-pel accuracy ipgsed
based on a parabolic model of SAD to avoid such
computational complexity. In the proposed schematjan
estimation (ME) is only performed in integer-peléés and
the following sub-pel level motion vectors are fdunom

the parametric SAD model for which the model paranse
are estimated from the SAD values obtained in the
integer-pel levels. Fall-back check is performecetsure
the validity of the parabolic SAD model with theigsated
parameters. The experiment result shows that theosed Bitrate (kbps)
scheme can reduce the motion estimation time wgbtwt
30% of the total ME times in average with negligibl
amount of PSNR drops (0.14dB in maximum) and bit

Foreman (300 frames, | PPP)

Fig. 1 R-D performance according to sub-pel level

Table 1 Proportion of sub pixel motion estimation

increments (2.54%in maximum). time in total motion estimation time

ME Portions (%)
Keywords. H.264|MPEG 4 Part 10 AVC, Parabola Sub pixel ME Time 44
model, Motion estimation. Integer Pixel ME Time 56

Due to proportion of sub-pel motion estimation time

1. Introduction much effort has been made to reduce the compugdtion
complexity on sub-pel motion estimation. Some prasi
works suggested cost function prediction methodagus
parabolic modelsLi and Gonzales assumed that the cost
function surface can be modeled by parabolic sagand,
if using parabolic models, the minimum cost funatir
motion estimation can be predicted without full ront
search for each macroblock [3].

However, the parabolic model may fail to predict
exact cost functions because, according to charstiteof
a moving object such as texture and motion spéedcdst
function can form arbitrary surface. A fall backeck
method was proposed biill et. al. to avoid this failure [4].
After prediction of the cost function using a paotd
model, a predicted cost function is compared with a
predefined threshold value whether it exceedshteshold
or not. If it exceeds the threshold, it will be thassumed

The H.264|[MPEG-4 part 10 AVC has shown
momentous improvements in terms of R-D performdnce
incorporating the sub-pel level (1/2 pel and 1/) petion
estimation [1] into the encoding processing. Sipctical
motion of a moving object can occur not only iremer-pel
level but also in arbitrary sub-pel level, it ispappriate to
depict practical motion of a moving object in suli-fevel
and this may enhance coding efficiency [2]. Thislearly
shown in Fig. 1 in which R-D performance is sigrafitly
improved with 1/4-pel level compared to integer-jgsiel.
However, as sub-pel level gets deeper, the numifer o
search points where the encoder should computecBsBs
is also increased. For example, if 1/4-pel leveltiom
estimation is used, after integer-pel searchinggss eight
half pixels around a best integer pixel should ke&ngned
to find a best half pixel and then eight quartexets
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that the predicted cost function is not correctremotion
estimation is performed without such a predictitinthe
predicted cost is less than the threshold valieptedicted  For the H.264|MPEG-4 Part 10 AVC encodeSsis the
cost function is assumed to be correct so the emeod cost function in SAD or SATD of residues for a
directly determine the final motion vectors fronetimodel. = macroblock, andx andy are the center position of the
In theHill's method, the SAD values are used to determinemacroblock. The parabola model coefficieAt®8, C, D, E,
the threshold values. However, as the SAD valuay va andF can be computed from the SAD values of the eight
according to the characteristics of video conteintis, not neighbor integer-pel points where motion estimatien
easy to determine an optimal threshold value whgh performeda priori. The nearest eight neighbors are shown
applicable for the characteristics of any videotean in Fig 3 where the SAD values at the eight pixelalions
In this paper, we propose a new method to Overcom@re found. The center pOSition of a macroblocl@jsDQ.
this weakness. The proposed method determines the
threshold values in two ways: first, the threshedtlies are
obtained by off-line training in different motioneetor 5(-1,1) | 6(0,1) | 7(1.1)
sizes and the finally selected block modes for test
sequences; second, threshold values are obtained by
on-line training. According to motion vector sizasd the
finally selected block modes, the threshold valass
updated during encoding process so that it carebattapt 3(-1,-1) | 2(0,-1) | 1(1,-1)
to the changing characteristic of video sequentes t
off-line training. Fig. 3 Center and its eight nearest neighbor pigekition
The remaining part of this paper is organized asin a macroblock
follows: In Section 2, parabolic models are destilwith
the comparison between the full motion search dm t In [4], the model parameter values are found by @
motion vector estimation. A fall back check methsd@lso  Some parameters such/AasandB can be determined in two
explained; then, our proposed method is descritmd f ways in Eq. (2).
off-line training and on-line training. For the Kfaback

S(x,y)= Ax*+By?*+Cxy+ Dx+Ey+F )

4(-1,0) | 8(0,0) | 0(1,0)

check, we propose a thresholding scheme; Sect&io®s C =%{S(d3)+ s(d,)-s(d,) - S(ds )}
experiments results with analysis; finally, Sectigh 1
provides conclusion and future work. D =Z{S(d1)+ S(d7)_ S(ds)_ S(ds)} or
1
2. Model Description and Training M ethods E =~ {slds )+ Sld; ) - Sld) - S{do )}
For real time applications of software video eneede A= S(d2 -D-F
it is essential to accelerate the motion estimapiorcess A=S(h)+D-F
without considerable R-D performance degradatione T B= SEVJJ, e-g O 3)
method used in this paper is to predict the casttfan in
sub-pel levels using a parabolic model. Fig. 2 shaw B= S(v )— E-F

practical cost function surface that can be modeleda
parabolic form. The final motion vector can be fdwat the
location where the cost function value is minimum.

The best candidates for the paramet&rand B can be
chosen using the predicted SAD and the original SAD
integer pixel unit at the pixel position where tinéimum
difference between the predicted SAD and the aaigin
SAD is obtained among the pixel position 1, 3,18 & in
Fig. 8.

2.2 Validity check of parabolic models

Sometime, the parabolic model may fail to model ¢bst
function surface, especially in a moving objectatdill et.

al. proposed a fall back check method to examine the
validity of the parametric mode by comparing with a
predefined threshold the difference in Eq. (3) lestavthe

; predicted cost function values and the block matghi

X based cost function value in integer-pel.
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Fig. 2 A cost function surface by a parabolic model Diff =

2.1 A parabola Model for cost function in
motion search

i %5,7

S and S; are the predicted and original SAD values,
respectively. IfDiff exceeds a predefined threshold value,
the estimated SAD by the parabolic model is notduse
Instead, the full motion vector search is performédiff
is less than the threshold value, then it is assuthat the

A mathematical model for the parabola surface is
given by [4] such as
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parabolic model can reasonably predict the SAD tianc
which leads to direct determination of the moti@tter in
sub-pel levels.

2.2.1 Off-line learning of threshold values

In this paper, for the fallback check on the estada
parabolic model, a threshold valud, is defined as the
ratio of average minimum SAD value in integer-paldls
to the average minimum SAD value in 1/4-pel levblsth
of which are obtained by the motion vectors basedud
search (MVFS), and is given by

_ Average SADyesai- pe
Average SADMVFS@M_ pd

(4)

With the SAD values in integer-pel levels for a Niier
motion estimation, the parabolic model parameterste
MB are estimated. Then, the final motion vector is
estimated based on the parabolic model with thenastd
model parameter. We define a model validity indet/()

as the ratio of two minimum SAD values by

SADy\rsar- pel

MVI = (5)

SAD e @1/4-pel

where  SAD\rsan. pa are the

minimum SAD values obtained by the motion vectors
based on full search in integer-pel levels and dasethe
parabolic model in 1/4-pel levels, respectivelyllack
check is performed such that the estimated pa@baiidel

is valid if MVI >Th, otherwise it's not valid.

Fig 4 shows the distributions dfh values versus
different motion vector magnitudes for various ldndf
different video sequences. Thereforéh is obtained
according to different motion vector magnitude grau
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Table 2 indicates the averagesTaf values for different

motion vector magnitude groups. The motion vector

magnitude groups are MVG 1, MVG 2, MVG 3, MVG 4,
MVG 5, MVG 6, MVG 7, MVG 8 and MVG 9 for the
ranges of the motion vector magnitudes with 0, @&,
4~6, 6~8, 8~10, 10~12, 12~14 and above 14, respdcti

Table 2Th value for nine motion vector groups for four
different QP values for a training set
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QP 24 28 32 36
MVG 1 0.585 0.589 0.601 0.623
MVG 2 0.752 0.723 0.702 0.697
MVG 3 0.742 0.715 0.702 0.703
MVG 4 0.730 0.716 0.706 0.708
MVG 5 0.750 0.732 0.715 0.713
MVG 6 0.743 0.736 0.735 0.736
MVG 7 0.727 0.745 0.749 0.764
MVG 8 0.896 0.876 0.860 0.837
MVG 9 0.725 0.740 0.741 0.777

Fig. 5 shows the scatters of the predicted SAD asloy
the parabolic model and the original SAD valuesfildy
search. The deviations away from the diagonalihidecate
the mismatch between the parabolic SAD model aed th
original SAD maps. If the deviations are compersate
then more accurate fallback check can be performed.
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Fig. 5 A scatters plot of the predicted SAD vallgsthe
parabolic model and the original SAD values by $&garch
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Table 3 tabulates the average MCF values for nine
different motion vector groups. It can be notickdttthe
average MCF values vary according to different owoti
vector magnitude groups. Therefore, this is taketo i
account for fallback check on the parametric model.

Table 3 Average MCF values for nine different motio
vector groups

QP 24 28 32 36
MVG 1 1.784 1.741 1.679 1.605
MVG 2 1.514 1.543 1.560 1.560
MVG 3 1.487 1.513 1.520 1.516
MVG 4 1.465 1.472 1.487 1.494
MVG 5 1.440 1.449 1.469 1.476
MVG 6 1.470 1.466 1.462 1.459
MVG 7 1.460 1.440 1.424 1.410
MVG 8 1.300 1.308 1.332 1.354
MVG 9 1.457 1.416 1.435 1.398

For fallback check on the parabolic modely! in
Eq. (5) is first compensated by a model compensatio
factor (MCF) prior to comparing it witfith defined in Eq.
(4). The MCF is defined as

_ SADyyvesar- pel

MCF (6)

SADypu@r- pel



where SADypyerps 1S the minimum SAD values

obtained by the motion vectors based on the parmbol
model in integer-pel levels. Therefore, the vajidiheck
on the estimated parabolic model is modified as

Valid

>

MVI IMCF Th

()

Not valid

2.2.2 On-linelearning of threshold values

Since the characteristics of video contents vaaynfr
by frame or content by content, the SAD values akgy.
Therefore, usage of a global threshold value maybeo
appropriate for different kinds of video sequendasthis
paper, we propose an on-line update of threshdltegaTo
obtain a threshold value for each MV®h is trained
on-line as a moving average for each MVG.

{ SAD(”)MVFs@l- pel
} (6)

SAD (n)MVFS@]/4- pel
+ SAD("' N)MVFS@l—pel
SAD("' N)MVFS@1/4- pel

where N is the window size andrh(n) is a threshold
value at timen. Th is updated on-line for each MVG for
each MB mode for the MBs with the motion vectorl ful
search . Fig 6 summarizes our proposed scheme as
flowchart.
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16x16 mode motion estimation
using proposed model
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Fig. 6 A flow chart of proposed method

First, after integer-pel motion estimation, a patab
model is constructed and SAD function is prediatedhg
the parabolic model at 16x16 mode. Next, the ratio
between the predicted minimum SAD cost in quartr-p
level and the minimum SAD value in integer-pel leise
examined, and then the ratio is compared with tiolels
value. If the ratio is less than threshold vale, predicted

Perform original motion estimation
method
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cost function is kept without any further refinerhen
However, if the ratio exceeds the threshold vatbe, full
search is performed for motion estimation. If tleegbolic
model turns out to predict the SAD cost functioagisely,

the model applies to all other block matching modes
without any other further check. However, if thdl Bearch

for motion estimation method is used at 16x16 mode
instead of the parabolic model, the validity of gizolic
model is evaluated at all other modes.

3. Experimental Results

H.264|MPEG-4 Part 10 AVC reference software,
Joint Model (ver11.0) is used and the platform usedhe
experiment is a PC with Intel core™ 2 2.4GHz aniaHz
CPU and 2 GB RAM. All sequences are in CIF formad a
the frame rate of the sequences is 30frame/sec. The
baseline profile of H.264|MPEG-4 Part 10 AVC is dise
which includes I- and P-frame coding only, variableck
size matching and CAVLC. Single and multiple refere
frame scheme are used.

The R-D performance is compared for the original
JM, a modified JM with off-line training and anothe
modified JM with on-line training foFootball, Foreman,
and Mother & Daughter sequences. Fig. 7 shows their R-D
performances.
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Fig. 7 R-D Performance of Sequences in Single Rafay
Frame Case

As shown in Fig. 7 there is no significant drop in
R-D performance between the original JM and the
modified JM’s.

Table 4 Execution time savings taken for sub-petiono
estimation : 1 reference is used for Baseline [gofi

QP 24 28 32 36

Off-line | 23.42 | 21.04 | 21.04 | 27.06
Football :

On-line | 22.57 | 33.82 | 34.77 | 19.16
For Off-line | 16.11 | 44.73 | 34.20 | 59.05

On-line | 24.83 | 43.05 | 45.34 | 45.84
Mother& | Off-line | 39.35 | 60.41 | 54.99 | 59.42
Daughter | On-line | 28.54 | 73.31 | 60.77 | 55.09

Table 4 shows the time savings on sub-pel motion
estimation for the modified JM with off-line tramg and



on-line training. Even though there is fluctuatiecording
to sequences, time saving in sub-pel motion esitmas
about 20~30% forFootball, about 15~60% foForman,

and almost 40~60% fovother& Daughter sequences for
the modified with off-line training method. The mified
JM with on-line training yields the time savingsthvabout
19~35% % forFootball, about 24~45% foForman, and
28 ~73% forMother & 4 sequences.
Table 5 Bit rate and PSNR Variation
Off-line Train On-line Train
Bitrate(%)| PSNR(dB) Bitrate(%)| PSNR(dB
Football 0.70 -0.04 0.66 -0.05
Foreman 2.06 -0.07 2.54 -0.08
Mother 0.62 -0.13 0.73 -0.14
Coast 0.74 -0.04 0.59 -0.04
Hall -1.16 -0.06 -0.78 -0.07
Crew 1.07 -0.06 1.11 -0.07

Table 5 demonstrates bit rate fluctuation
drops for the off-line training and the on-lineitiag. The
bit rate varies between -1.16~2.06% for the of&lin
training and -0.78~2.54% for the on-line traininghe
PSNR drops are in the range between -0.04 anddB.13
for the off-line training and -0.04~0.14dB for tba-line
training. The R-D performance drop is negligible.

Table 6 Sub-pel Motion Estimation Time Saving

Off-line Train On-line Train
Time Saving(%) Time Saving(%)
Football 21.04 33.82
Foreman 44,73 43.05
Mother 60.41 73.31
Coast 33.94 21.41
Hall 77.67 75.20
Crew 38.29 55.13

Table 6 reveals sub-pel motion estimation time
reduction in two training cases. Sub-pel motionnestion
time is reduced from 21.04% to 77.67% for the of&l
trained threshold and 21.41% to 75.20% for the io@-|
trained threshold. The on-line training method isren
advantageous than off-line training when the
characteristics of video changes rapidly such-astball
andCrew sequences.

Proportion of sub-pel motion estimation in total
encoding time gets enlarged as the number of metere
frames increases. So the proposed fast sub-pelomoti
estimation method more reduces the total encodingst
as the number of reference frames increases. KEghiBits
the relative times taken for motion estimation usrshe
number of reference frames. With one single refegen
frame, motion estimation just occupies about 19%hef
total encoding time but, with 3 reference framest, i
occupies almost 50% of the total encoding time. The

deeper the sub-pel levels get, the more the motior4]

estimation time is taken.

Fig. 9 shows the time savings of the total encoding
time. As the number of reference frame increasks, t
amount of time saving is increased.
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4. Conclusion

Sub-pel motion estimation contributes to improveDR-
performance in H.264|MPEG-4 Part 10 AVC encodeus, b

it causes large computational complexity. To acetdethe
encoding process, parabolic model based motion
estimation is proposed and a method to examine the
validity of proposed model is also introduced. Rbe
validity check, the on-line trained threshold is rmo
advantages to fast moving areas, which can acteléra
encoding speed with negligible R-D performance drop
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