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Abstract: A new video compression standard called High Efficiency Video Coding (HEVC) has 
recently been released onto the market. HEVC provides higher coding performance compared to 
previous standards, but at the cost of a significant increase in encoding complexity, particularly in 
motion estimation (ME). At the same time, the computing capabilities of Graphics Processing Units 
(GPUs) have become more powerful. This paper proposes a parallel integer-pel ME (IME) 
algorithm for HEVC on GPU using the Compute Unified Device Architecture (CUDA). In the 
proposed IME, concurrent parallel reduction (CPR) is introduced. CPR performs several parallel 
reduction (PR) operations concurrently to solve two problems in conventional PR; low thread 
utilization and high thread synchronization latency. The proposed encoder reduces the portion of 
IME in the encoder to almost zero with a 2.3% increase in bitrate. In terms of IME, the proposed 
IME is up to 172.6 times faster than the IME in the HEVC reference model.     
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1. Introduction 

The popularity of high definition (HD) videos, the 
diversity of service and the emergence of beyond HD 
formats create demands for a new video coding standard 
that can achieve higher coding efficiency and better visual 
quality than the H.264/AVC (Advanced Video Coding) 
standard. The new standard, High Efficiency Video 
Coding (HEVC), was recently established by the Joint 
Collaborative Team on Video Coding (JCT-VC), an expert 
group proposed by the ISO/IEC Moving Expert Group 
(MPEG) and the ITU-T Video Coding Expert Group 
(VCEG) [1]. Compared to H.264/AVC, HEVC provides 
50 % better compression efficiency with equal visual 
quality. The significant bit-rate savings are achieved 
through the use of a set of new encoding tools and 
algorithms, along with some well-known features adopted 
from existing standards. On the other hand, such 
compression performance requires a dramatic increase in 
the computational complexity, making real-time video 
coding difficult to achieve. Motion estimation (ME) is the 

most complex and time-consuming process. In HEVC 
encoders, ME typically requires approximately 70% of the 
total computational load. Therefore, some researches have 
focused on ways to reduce the computational load of ME. 
Diamond search [2] and three step search [3] are two well-
known fast-search algorithms.  

Recently, the academic and industrial parallel 
processing communities have turned their attention to 
Graphic Processing Units (GPUs). Modern GPUs have 
evolved into massively-parallel processors with 
tremendous power so that the computational capability of 
GPUs far surpasses that of Central Processing Units 
(CPUs). Some stages of the fixed-function pipeline in 
modern GPUs have been replaced by programmable 
modules. Therefore, GPUs are currently utilized not only 
for accelerating graphics processing and 3D rendering but 
also for speeding up non-graphics applications, such as 
linear algebra, physical simulation, and image processing. 
This type of utilization is called General-Purpose 
computing on GPUs (GPGPU). With this trend, Compute 
Unified Device Architecture (CUDA) was introduced by 
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NVIDIA in 2006 to provide a programming API to exploit 
the high degree of inherent parallelism on GPUs [4]. It is 
scalable and allows the programmer to implement task- 
and data-parallel parts of the software in an abstract yet 
transparent manner by providing a small set of extensions 
to standard programming languages.  

This paper extends our earlier work on a GPU-based 
full-search integer-pel ME (IME) algorithm for 
H.264/AVC [5] to HEVC by taking the characteristics of 
HEVC into account and evaluates its performance in terms 
of coding efficiency and computational complexity after 
integrating it into an HEVC encoder. In the proposed IME, 
concurrent parallel reduction (CPR) is presented. CPR 
increases the thread utilization and reduces the thread 
synchronization by performing several PR operations 
simultaneously to solve two problems in conventional 
parallel reduction (PR). Because HEVC supports larger 
block sizes, more flexible block partitioning, and 
asymmetric motion partitioning (AMP), all these 
characteristics were considered in the proposed algorithm. 
In the proposed encoder, GPU performs the IME algorithm 
in a pre-pass and transfers the integer-pel motion vector 
(IMV) information to the CPU. The CPU then performs all 
other processing, such as prediction and transform. In the 
inter predictions, all IMVs and costs obtained by the GPU 
are used directly for motion vector refinement. 

The remainder of this paper is organized as follows. 
The next section describes the related works. Section 3 
introduces the conventional IME in HEVC and the CUDA 
architecture. Section 4 provides details of the proposed 
approach. Section 5 includes performance evaluations of 
the proposed encoder, followed by the final conclusions in 
the last section. 

2. Related Work 

Some studies aiming to accelerate ME using a GPU for 
H.264/AVC can be found [6-8]. Chen et al. presented an 
efficient 4×4 block-level parallelized full search algorithm 
[6]. Their work divided the ME into different steps to 
achieve high parallelism through low data transfer between 
the CPU and GPU memories and it considered a block-
level parallelism. On the other hand, this approach has 
high memory access latency that results from the use of the 
off-chip memory of the GPU. Zhou et al. [7] presented 
another approach that takes full advantage of the on-chip 
memory of the GPU to reduce memory access latency and 
achieved up to 50 fold performance improvement 
compared to CPU implementation. Monteiro et al. [8] 
implemented an ME algorithm with three distinct hardware 
architectures: a parallel solution for multi-core processor 
using OpenMP, a distributed solution for cluster/grid 
machines, and a CUDA-based solution. Their results 
showed that the CUDA-based solution provides significant 
speed-up compared to the others. Some GPU-based ME 
algorithms have been proposed for HEVC [9-11]. Radicke 
et al. applied AMP and diamond search pattern, and 
evaluated their algorithm on various GPUs [9]. Wang et al. 
presented an HEVC encoder with a CPU plus GPU 
platform [10]. The ME process was performed on GPU 

simultaneously while other processes were performed on 
the CPU. They employed wavefront parallel processing for 
synchronization between the CPU and GPU. Another fast 
encoding system performed the ME process line-by-line on 
GPU to overlap the CPU and GPU computations [11].  

These studies, however, did not consider the PR 
operation. Conventional PR inherently has very low thread 
utilization, resulting from halving the number of active 
threads for consecutive iterations and required thread 
synchronization between the iterations due to the data 
hazards, which can be solved by the proposed CPR. 

3. Background 

3.1 Integer-Pel Motion Estimation in 
HEVC 

IME is performed on a block-by-block basis and 
supports variable block sizes in HEVC. Every frame is 
subdivided into coding tree units (CTUs). This is 
comparable to the concept of macroblocks in H.264/AVC. 
Each CTU can be divided recursively into multiple square 
coding units (CUs), ranging from 8×8 up to the CTU size. 
Each CU includes several prediction units (PUs) and 
transform units (TUs), which allows the prediction and 
transform to be handled in an independent manner. There 
are various PU partitions in a 2N×2N CU, as shown in Fig. 
1. AMP is a major innovation of HEVC compared to 
H264/AVC; it improves the coding efficiency because it 
can represent an irregular image pattern quite efficiently.  

The IME process identifies the best matched block in a 
search area (SA) of a reference frame with respect to the 
target PU in a current frame and provides a map of the 
displacement using a motion vector (MV). After a 
reference frame is selected, an SA is determined in the 
reference frame, typically centered at a motion vector 
predictor (MVP). A search for the most similar block is 
performed in the SA. Matching is normally performed by 
minimizing the similarity criterion defined by  

 
 ,pred predC D Bλ= + ⋅                             (1) 

2Nx2N Nx2N

2NxN

 
(a) Square and symmetric non-square PUs for all CUs  

 
2NxN/2

2NxN/2

3N/2x2N 3N/2x2N

(b) Asymmetric motion partitioning for only 16×16 and 32×32 CUs

Fig. 1. PU partitions for a 2Nx2N CU. 
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where C is the total cost. D normally represents the sum of 
absolute differences (SAD) between the current PU and 
the matching block in the reference frame. λpred is the 
Lagrangian multiplier and Bpred is the number of bits 
required to code a motion vector difference (MVD) 
between the MVP and the MV candidate. Once the best 
matched block is selected, the MV candidate pointing to its 
position becomes the final MV of the PU. 

3.2 Compute Unified Device Architecture 
(CUDA) 

CUDA is a parallel programming framework for 
utilizing GPUs for general purpose computing. A CUDA 
program consists of a host program executed by sequential 
threads on CPU and a device program executed by 
thousands of threads on GPU. There is a function called a 
kernel that is launched by CPU and executed on GPU. 
CUDA employs a thread hierarchy to deal with the large 
number of threads. A thread block consists of concurrently 
executing threads and a grid includes independent thread 
blocks. All threads in a thread block can cooperate among 
themselves through barrier synchronization and 
communicate data via the on-chip memory of GPU. Fine-
grain data parallelism can be captured with threads, and 
more coarse-grain parallelism can be described with thread 
blocks. CUDA GPUs create, manage, schedule, and 
execute threads in groups of 32 parallel threads called 
warps. i.e., a thread block can also be split into warps. All 
threads in a warp execute one common instruction at a 
time, so full efficiency is realized when all 32 threads of 
the warp agree on their execution path. Before launching a 
kernel, a programmer needs to determine how many 
threads are needed for kernel execution and specify a 
thread block and a grid dimension. 

This study has been designed on a Kepler architecture 
GPU. A Kepler GPU consists of streaming multiprocessors 
(SMXs). An SMX includes several CUDA cores, registers, 
configurable shared memory/L1 cache, warp schedulers, 
etc.. Once a kernel is launched, a specified grid is 
configured and the thread blocks are assigned to SMXs 
depending on the required resources, such as the number 
of threads per thread block and the amount of shared 
memory. The CUDA cores and other execution units in an 
SMX execute the threads. In the GPU, there are several 
memory types: register, local memory, shared memory, 
global memory, constant memory, and texture memory 
[12]. The register is the fastest memory and only visible to 
a corresponding thread. That is, each thread has its own 
registers and cannot access those of the other threads. 
Local memory is used to hold automatic variables when 
the device compiler determines if there is insufficient 
register space to hold them. In contrast to registers, access 
to local memory is highly time-consuming because it is an 
off-chip memory. Shared memory is an on-chip memory 
and as fast as registers when proper access patterns are 
used. This memory is only accessible to a thread block. All 
threads within a thread block use this memory to share 
data and communicate with other threads. All threads can 
access global memory and conduct read-only access to 
constant memory and texture memory. These memories 

have cache memories to speed up memory access and are 
optimized for different memory usages. Texture memory 
offers fast 2D memory access using a texture cache and 
different addressing modes as well as data filtering for 
some specific data formats. 

4. Proposed Integer-Pel Motion 
Estimation Algorithm 

In this study, the full-search is used because it is more 
suitable for GPU computation than other fast-search 
methods. An SA size should be chosen carefully because 
the computational complexity depends directly on it. From 
the evaluations for coding efficiency with various SA sizes 
under common test conditions (CTCs) [13], a SA size of 
16 was chosen. In MVP decisions, the spatial predictors 
are unavailable because all blocks are processed at the 
same time. Therefore, zero MVP is assumed for all PUs. 

The proposed algorithm consists of three stages: SAD 
calculation, hierarchical-SAD computing (H-SAD) [6], 
and CPR. Before the IME process, a current frame and its 
reference frame are transferred to the texture memory of 
GPU. Every CTU is processed by one thread block. 
Therefore, the thread blocks can process the corresponding 
CTUs simultaneously. As every thread block performs the 
same process, the algorithm is described in the view of a 
thread block in the next subsections. 

4.1 SAD Calculation 
The SAD value of every search position in a search 

window needs to be calculated. The search window size is 
set to 32×32 according to the SA size of 16. The thread 
block size is set to 32×32 to map each thread to each 
search position. The default CTU size is 64×64 and the 
smallest PU size is 4×8 or 8×4 in HEVC. First, both the 
CTU in the current frame and its reference block are 
cached into shared memory. Thread synchronization is 
called to guarantee that all the data is loaded completely. 
All SAD values of a 4×4-block in a CTU are then 
calculated, i.e., each SAD value is calculated by each 
thread and stored into global memory. These SAD values 
are denoted as a 4×4-SAD group. This parallel SAD 
calculation is repeated until all 4×4-SAD groups for the 
CTU are computed. Note that there are 256 4×4-SAD 
groups for the CTU. 

4.2 Hierarchical SAD Computing 
H-SAD computing is the process of deriving the SAD 

values in a larger block from the previously calculated 
SAD values in smaller blocks. The basic idea is that an 
SAD value of a block at a given search position is equal to 
the sum of the SAD values of all sub-blocks it contains. 
Therefore, an SAD value with few addition operations can 
be obtained instead of calculating the actual SAD value. In 
the H-SAD stage, a thread block size is set to 32×32 to 
map each thread to each search position. Some 4×4-SAD 
groups are cached into shared memory, which are then 
combined to generate the SAD values of both PUs in an 
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8×8-CU and AMPs of a 16×16-CU. The generated SAD 
groups are stored into global memory. In the same manner, 
all SAD groups in the CTU are constructed. Note that there 
are 585 SAD groups in the CTU. 

4.3 Concurrent Parallel Reduction (CPR) 
The position of a block with the minimum cost defined 

by Eq. (1) needs to be found to obtain an MV. Each SAD 
group has its own MV. Therefore, a PR operation can be 
applied to find the minimum cost. Fig. 2 gives an example 
of the PR process with 8 threads for the minimum among 
16 data. The number of processed data is halved after each 
iteration, resulting in the minimum after the last iteration. 
In this work, a PR operation with 512 threads can be 
applied after calculating 1024 costs using Eq. (1). For a 
number of SAD groups in a CTU, the PR operations can 
be applied sequentially. On the other hand, this sequential 
approach has some critical disadvantages in terms of 
thread utilization as well as thread synchronization latency. 

In PR, the number of active threads is halved between 
iterations. This yields very low thread utilization, resulting 
in long latency. Low thread utilization means that less 
active threads are being scheduled in an SMX; so that a 
warp is less likely to hide a latency caused by another warp 
executing a long-latency operation. 

The proposed CPR deals with these problems. To 
increase the thread utilization and decrease the thread 
synchronization, CPR processes several SAD groups in 
parallel. The thread block is set to contain as many threads 
needed to obtain high occupancy. In current GPUs, 1024 
threads can be allocated in a thread block. As many SAD 
groups as possible are then cached into shared memory. 
For Kepler GPUs, only 16 SAD groups can be loaded due 
to the shared memory size limit. Each SAD value is used 
to calculate the corresponding cost using Eq. (1). In this 
study, 1024 costs corresponding to an SAD group are 
denoted as a cost group. There are 16 cost groups and 1024 
threads so that 1024 threads are grouped into 16 thread 
groups, each of which consists of 64 threads. 16 PR 
operations are executed concurrently by mapping each 
thread group to each cost group. Each thread in a cost 
group finds a smaller cost among two costs in each 
iteration, resulting in 64 costs at the last, as shown in Fig. 3. 
Because every thread group works independently on its 
corresponding cost group, no synchronization is needed 
between iterations. On the other hand, after the last 
iteration, just one thread synchronization is needed to 
ensure that 64 costs are obtained. It is needed to find the 
minimum cost among 64 costs with 64 threads. Therefore, 
the conventional PR operation with warp-unrolling is 
applied to 64 costs by a warp, 32 threads [14]. This warp-
based PR operation requires no thread synchronization. In 
short, CPR increases the thread utilization by treating 
several cost groups simultaneously and requires only one 
thread synchronization. In one CPR operation, 16 IMVs 
can be obtained so that the CPR operation is performed 
repeatedly until all IMVs are obtained. The GPU transfers 
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Fig. 3. Process for finding 64 small costs in a cost group in CPR. 
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all IMVs and corresponding costs to the CPU. 

5. Performance Evaluation 

For a performance evaluation of the proposed 
algorithm, Intel Core i7-2600 3.4 GHz CPU, 8 GB 
memory, Geforce GTX 780 with 3 GB DRAM, and 
CUDA toolkit 6.5 were used. HM 10.0 encoder under the 
low-delay P configuration in the CTC was used as an 
anchor. The proposed GPU-based IME was integrated into 
the anchor, which is denoted as the proposed encoder. 100 
frames of class B (1920×1080) and class C (832×480) 
sequences with QPs of 22, 27, 32, and 37 were tested. For 
a performance evaluation of the proposed encoder in 
coding efficiency and computational complexity with 
respect to the anchor, the Bjontegaard-delta (BD)-bitrate of 
the Y component [15] and the encoding time saving (ETS) 
were used. The ETS is defined as  

 

 100 (%),anc pro

anc

T T
ETS

T
−

= ×                       (2) 

 
where Tanc and Tpro are the encoding times of the anchor 
and the proposed encoder, respectively. A relative 
computational complexity of IME (Rime) in an encoder is 
defined as  

 

 100 (%),ime
ime

enc

T
R

T
= ×                           (3) 

 
where Time and Tenc are the IME execution time and the 
total encoding time, respectively. 

Table 1 lists the coding efficiency and the ETS of the 
proposed encoder with respect to the anchor as well as the 
Rime of the two encoders. The data transfer time between 
CPU and GPU is included in the GPU-based IME 
execution time measurement. The proposed encoder 
yielded a 2.3% increase in BD-bitrate against the anchor. 
The bitrate losses result from the small SA size of 16 as 
well as the zero center position in the SA. The 
performance degradation is significant for the sequence, 

“BasketballDrive”, which has high motion activities with 
global motion. The use of the zero center position is the 
dominant factor for the loss. In terms of computational 
complexity, the Rime of the proposed encoder is 0.3% on 
average whereas it is 19.4% in the anchor. The proposed 
encoder reduces the complexity of IME to almost zero, 
providing 18.1% ETS.  

Table 2 lists the speed-up (SU) of the proposed IME, 
which is the ratio of two IME execution times defined as 

 

 ,anc

pro

IMET
SU

IMET
=                                (4) 

 
where IMETanc and IMETpro are the total IME execution 
times of the anchor and the proposed encoder, respectively. 
Table 2 shows that the proposed IME provides SU of up to 
172.6 against the IME in the anchor. The complexity of the 
proposed IME depends on the sequence size because it 
employs the full-search method. In contrast, the IME 
complexity in the anchor depends on both the sequence 
size and the characteristics of the sequence, resulting from 
the fast-search method. 

 
Table 1. Coding efficiency and ETS of the proposed encoder against the anchor for 100 frames. 

Rime (%) Class Sequence BD-bitrate (%) ETS (%) 
Anchor Proposed encoder 

Kimono 1.3 26.7 27.3 0.2 
ParkScene 2.1 12.6 14.2 0.3 

Cactus 0.7 15.3 16.7 0.3 
BasketballDrive 9.7 26.8 26.6 0.3 

B 

BQTerrace 1.1 9.4 11.8 0.3 
BasketballDrill 2.1 17.8 18.6 0.3 

BQMall 0.6 17.3 18.4 0.3 
PartyScene 0.2 13.2 13.7 0.2 

C 

RaceHorses 3.2 23.5 27.2 0.2 
 Average 2.3 18.1 19.4 0.3 

Table 2. Speed-up of the proposed IME against the 
IME in the anchor for 100 frames. 

IME execution time (s) 
Sequence IME in the 

anchor 
Proposed 

IME 
Speed-up 

Kimono 1892.8 12.1 156.4 
ParkScene 765.4 12.1 63.3 

Cactus 877.7 12.1 72.5 
BasketballDrive 1820.5 12.1 150.5 

BQTerrace 666.8 12.0 55.6 
Average 1204.6 12.1 99.7 

BasketballDrill 224.1 2.7 83.0 
BQMall 221.4 2.7 82.0 

PartyScene 191.8 2.7 71.0 
RaceHorses 466.0 2.7 172.6 

Average 275.8 2.7 102.2 
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6. Conclusion 

This paper proposed a GPU-based IME algorithm for 
HEVC. H-SAD computing was applied to reduce the 
computational complexity by data reuse. The proposed 
CPR solves two problems in the conventional PR. CPR 
increases the thread utilization and reduces the thread 
synchronization by conducting several PR operations 
concurrently. The proposed GPU-based encoder makes the 
portion of the IME negligible with a 2.3% increase in BD-
bitrate. Owing to the dependency on the spatial MVs, zero 
center position is used for the SA, which leads the 
significant coding loss in a sequence with high motion 
activities. Designing a proper center position can improve 
the coding performance. In terms of the IME, the proposed 
IME is up to 172.6 times faster than the IME in the HM 
encoder. 

In this study, promising performance was obtained in 
the IME with the huge computing power of the GPU. This 
GPU-based parallelization approach can be applied to 
other algorithms used in video coding, such as 
interpolation, fractional ME, de-blocking filter, and 
Sample Adaptive Offset (SAO) in HEVC. With these 
algorithms parallelized on GPU, video encoding can be 
accelerated much further. 
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