• Title/Summary/Keyword: Intact rock

Search Result 116, Processing Time 0.023 seconds

The Pre-Evaluation of Stability during Tunnel Excavation using Unconfined Compression Strength of Intact Rock or Rock Mass and Crown Settlement Data (터널천단변위와 암석 또는 암반의 일축압축강도를 이용한 시공 중인 터널의 예비 안정성 평가)

  • Park, Young Hwa;Moon, Hong Duk;Ha, Man Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2015
  • PURPOSES : It is difficult to estimate tunnel stability because of lack of timely information during tunnel excavation. Tunnel deformability refers to the capacity of rock to strain under applied loads or unloads during tunnel excavation. This study was conducted to analyze a methods of pre-evaluation of stability during tunnel construction using the critical strain concept, which is applied to the results of tunnel settlement data and unconfined compression strength of intact rock or rock mass at the tunnel construction site. METHODS : Based on the critical strain concept, the pre-evaluation of stability of a tunnel was performed in the Daegu region, at a tunnel through andesite and granite rock. The critical strain concept is a method of predicting tunnel behavior from tunnel crown settlement data using the critical strain chart that is obtained from the relationship between strain and the unconfined compression strength of intact rock in a laboratory. RESULTS : In a pre-evaluation of stability of a tunnel, only actually measured crown settlement data is plotted on the lower position of the critical strain chart, to be compared with the total displacement of crown settlement, including precedent settlement and displacement data from before the settlement measurement. However, both cases show almost the same tunnel behavior. In an evaluation using rock mass instead of intact rock, the data for the rock mass strength is plotted on the lower portion of the critical strain chart, as a way to compare to the data for intact rock strength. CONCLUSIONS : From the results of the pre-evaluation of stability of the tunnel using the critical strain chart, we reaffirmed that it is possible to promptly evaluate the stability of a tunnel under construction. Moreover, this research shows that a safety evaluation using the actual instrumented crown settlement data with the unconfined compression strength of intact rock, rather than with the unconfined compression strength of a rock mass in the tunnel working face, is more conservative.

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

Developement of back-analysis model for determining the mechanical properties of jointed rock (절리암반의 역학적 특성 분석을 위한 역해석 모델 개발)

  • Cho, Tae-Chin
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 1996
  • Back analysis model, capable of calculating the mechanical properties and the in-situ stresses of jointed rock mass, was developed based on the inverse method using a continuum theory. Constitutive equation for the behavior of jointed rock contains two unknown parameters, elastic modulus of intact rock and stiffness of joint, hence algorithm which determines both parameters simultaneously cannot be established. To avoid algebraic difficulties elastic modulus of intact rock was assumed to be known, since the representative value of which would be quite easily determined. Then, the ratio ($\beta$) of joint stiffness to elastic modulus of intact rock was assigned and back analysis for the behavior of jointed rock was carried-out. The value $\beta$ was repeatedly modified until the elastic modulus from back analysis became very comparable to the predetermined value. The joint stiffness could be calculated by multipling the ratio $\beta$ to the final result of elastic modulus. Accuracy and reliability of back analysis procedure was successfully testified using a sample model simulating the underground opening in the jointed rock mass. Applicability of back analysis model for the underground excavation in practice was also verified by analyzing the mechanical properties of jointed rock in which underground oil storage cavern were under construction.

  • PDF

A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock

  • Bagheripour, Mohammad Hossein;Rahgozar, Reza;Pashnesaz, Hassan;Malekinejad, Mohsen
    • Geomechanics and Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-81
    • /
    • 2011
  • In this paper, a complement to the Hoek-Brown criterion is proposed in order to derive the strength of anisotropic rock from strength of the corresponding truly intact rock. The complement is a decay function, which unlike other modifications or suggestions made in the past, is multiplied to the function of the original Hoek-Brown failure criterion for intact rock. This results in a combined and extended form of the criterion which describes the strength of anisotropic rock as a varying fraction of the corresponding truly intact rock strength. Statistical procedures and in particular regression analyses were conducted into data obtained in experiments conducted in the current research program and those collected from the literature in order to define the Hoek-Brown's criterion complement. The complement function was best described by a simple polynomial including only three constants to be empirically evaluated. Further investigations also showed that these constants can be related to the other readily available parameters of rock material which further facilitate determining the constants. A great and prime advantage of the proposed complement is that it is mathematically simple including the least possible number of empirical constants which are easily estimated with minimum experimental effort. Moreover, proposed concept does not suggests any change to the original Hoek-Brown criterion itself or its constants and serves whenever anisotropy does exist in the rock. This further implies on the possibility of using any other failure criterion for intact rock in conjunction with the compliment to reach the strength of anisotropic rock.

Side resistance of rock socketed drilled shafts considering in situ rock mass condition (현장조건을 고려한 현장타설말뚝의 단위주면마찰력)

  • Sagong, Myung;Paik, Kyo-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.967-973
    • /
    • 2004
  • Rock socketed drilled shafts transfer significant portion of structural loads at the socketed part. Therefore, a proper design of side and base resistances of a shaft at the socket is a major concern for the geotechnical engineers. In this study, we modified the Hoek-Brown criterion to estimate side resistance of rock socketed drilled shafts. Earlier method to compute side resistance of a shaft is linear or power functions of intact rock masses. However, side resistance is mobilized like shearing which influenced by the mechanical properties of concrete and rock masses, adhesion of rock/concrete interface, roughness of rock socket. Therefore, a single coefficient or power of uniaxial compressive strength of intact rock cannot provide accurate values of side resistance in a wide range of the uniaxial compressive strength. A new approach proposed in this study can consider in situ rock mass condition (frequency or discontinuities, weathering condition), and rock types thus, it has a wider applicability than the earlier models.

  • PDF

Time-frequency domain characteristics of intact and cracked red sandstone based on acoustic emission waveforms

  • Yong Niu;Jinguo Wang;Yunjin Hu;Gang Wang;Bolong Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • This study conducts uniaxial compression tests on intact and single crack-contained rocks to investigate the time-frequency domain characteristics of acoustic emission (AE) signals monitored during the deformation failure process. A processing approach, short-time Fourier transform (STFT), is performed to obtain the evolution characteristics of time-frequency domain of AE signals. The AE signal modes at different deformation stages of rocks are different. Five modes of AE signal are observed during the cracking process of rocks. The evolution characteristics of time-frequency domain of AE signals processed by STFT can be utilized to evaluate the damage process of rocks. The difference of time-frequency domain characteristics between intact and cracked rocks is comparatively analyzed. The distribution characteristics of frequency changing from a single band-shaped cluster to multiple band-shaped clusters can be regarded as an early warning information of damage and failure of rocks. Meanwhile, the attenuation of frequency enables the exploration of rock failure trends.

Analysis of Empirical Failure Criteria and Suggestion of New Equation for Intact Rocks (경험적 파괴조건식의 해석과 새로운 수식의 제안)

  • Park, Chul-Whan
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.234-238
    • /
    • 1996
  • Three empirical criteria of rock failure are analyzed in order to understand the meaning of coefficients. Transformation of equations is discussed to apply in the numerical analysis. New failure criterion for intact rocks is proposed in this study, which can be used directly in programming. New equation has the form of parabolic curve($\alpha$=0.5~1.0), and is based on Mohr's shear failure using data from triaxial tests. Its validity will be discussed in the next report.

  • PDF

Elastic Wave Propagation in Jointed Rock Mass (절리암반에서의 탄성파 전파 특성)

  • Cha, Min-Su;Cho, Gye-Chun;Baak, Seung-Hyoung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.515-520
    • /
    • 2005
  • The behavior of jointed rock mass is much different from that of intact rock due to the presence of joints. Similarly, the characteristics of elastic wave propagation in jointed rock are considerably different from those of intact rock. The propagation of elastic waves in jointed rock is greatly dependent on the state of stress. The roughness, filling materials, and spacing of joints also affect wave propagation in jointed rock. If the wavelength of elastic waves is much larger than the spacing between joints, wave propagation in jointed rock mass can be considered as wave propagation in equivalent continuum. A rock resonant column testing apparatus is made to measure elastic waves propagating through jointed rock in the state of equivalent continuum. Three types of wave, i.e, torsional, longitudinal and flexural waves are monitored during rock resonant column tests. Various roughness and filling materials are applied to joints, and rock columns with various spacings are used to understand how these factors affect wave propagation under a small strain condition. The experimental results suggest that the characteristics of wave propagation in jointed rock mass are governed by the state of stress and influenced by roughness, filling materials and joint spacings.

  • PDF

End Bearing Behavior of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh-Sung;Kim, Kyung-Taek;Lee, Young-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.603-610
    • /
    • 2005
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the mass conditions of rock with fractures rather than the strength of intact rock. However, there are few available data and little guidance in the prediction of the end bearing capacity of drilled shafts socketed in weathered/soft rock, considering rock mass weathering. Therefore, a database of 13 load tests was constructed first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions(e.g. Em, Eur, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greather than 0.7 in most cases. Additionally, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

  • PDF

Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability

  • Aksoy, C.O.;Aksoy, G.G. Uyar;Guney, A.;Ozacar, V.;Yaman, H.E.
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In structures excavated in rock mass, load progressively increases to a level and remains constant during the construction. Rocks display different elastic properties such as Ei and ʋ under different loading conditions and this requires to use the true values of elastic properties for the design of safe structures in rock. Also, rocks will undergo horizontal and vertical deformations depending on the amount of load applied. However, under constant loads, values of Ei and ʋ will vary in time and induce variations in the behavior of the rock mass. In some empirical equations in which deformation modulus of the rock mass is taken into consideration, elastic parameters of intact rock become functions in the equation. Hence, the use of time dependent elastic properties determined under constant loading will yield more reliable results than when only constant elastic properties are used. As well known, rock material will play an important role in the deformation mechanism since the discontinuities will be closed due to the load. In this study, Ei and ʋ values of intact rocks were investigated under different constant loads for certain rocks with high deformation capabilities. The results indicated significant time dependent variations in elastic properties under constant loading conditions. Ei value obtained from deformability test was found to be higher than the Ei value obtained from the constant loading test. This implies that when static values of elastic properties are used, the material is defined as more elastic than the rock material itself. In fact, Ei and ʋ values embedded in empirical equations are not static. Hence, this workattempts to emerge a new understanding in designing of safer structures in rock mass by numerical methods. The use of time-dependent values of Ei and ʋ under different constant loads will yield more accurate results in numerical modeling analysis.