• Title/Summary/Keyword: Insulin like growth factors

Search Result 147, Processing Time 0.027 seconds

Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes (흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과)

  • Lee, Sun-Mi;Kim, Jong-Hoon;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

Antiproliferative properties of luteolin against chemically induced colon cancer in mice fed on a high-fat diet and colorectal cancer cells grown in adipocyte-derived medium

  • Park, Jeongeun;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.47-58
    • /
    • 2022
  • Purpose: Obesity and a high-fat diet (HFD) are risk factors for colorectal cancer. We have previously shown that luteolin (LUT) supplementation in HFD-fed mice markedly inhibits tumor development in chemically induced colon carcinogenesis. In this study, we evaluated the anticancer effect of LUT in the inhibition of cell proliferation in HFD-fed obese mice and HT-29 human colorectal adenocarcinoma cells grown in an adipocyte-derived medium. Methods: C57BL/6 mice were fed a normal diet (ND, 11.69% fat out of total calories consumed, n = 10), HFD (40% fat out of total calories consumed, n = 10), HFD with 0.0025% LUT (n = 10), and HFD with 0.005% LUT (n = 10) and were subjected to azoxymethane-dextran sulfate sodium chemical colon carcinogenesis. All mice were fed the experimental diet for 11 weeks. 3T3-L1 preadipocytes and HT-29 cells were treated with various doses of LUT in an adipocyte-conditioned medium (Ad-CM). Results: The weekly body weight changes in the LUT groups were similar to those in the HFD group; however, the survival rates of the LUT group were higher than those of the HFD group. Impaired crypt integrity of the colonic mucosa in the HFD group was observed to be restored in the LUT group. The colonic expression of proliferating cell nuclear antigen and insulin-like growth factor 1 (IGF-1) receptors were suppressed by the LUT supplementation in the HFD-fed mice. The LUT treatment (10, 20, and 40 µM) inhibited the proliferation and migration of HT-29 cells cultured in Ad-CM in a dose-dependent manner, as well as the differentiation of 3T3-L1 preadipocytes. Conclusion: These results suggest that the anticancer effect of LUT is probably due to the inhibition of IGF-1 signaling and adipogenesis-related cell proliferation in colon cancer cells.

Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor

  • Wu, Tianyi;Qi, Wenxiao;Shan, Haojie;Tu, Bin;Jiang, Shilin;Lu, Ye;Wang, Feng
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.526-535
    • /
    • 2022
  • Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

Effects of an exercise program on health-related physical fitness and IGF-1,C-peptide, and resistin levels in obese elementary school students

  • Ha, Min-Seong;Cho, Won-Ki;Kim, Ji-Hyeon;Ha, Soo-Min;Lee, Jeong-Ah;Yook, Jang Soo;Kim, Do-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.956-962
    • /
    • 2018
  • Childhood obesity causes a higher risk of obesity, premature death and disability in adulthood. In addition, obese children experience an increased risk of respiratory problems, hypertension, cardiovascular disease, insulin resistance and psychological effects. This study aimed to investigate how an exercise intervention affects health-related physical fitness and inflammatory-related blood factors in obese children after. We hypothesized that there would be positive effects on serum levels of insulin-like growth factor-1 (IGF-1), connecting peptide(C-peptide) and resistin, as well as in muscle and cardiovascular-related physical capacities, after an exercise intervention in obese children. Thirty-seven obese children haveperformed health-related fitness tests and provided blood samples for the analysis of changes in circulating biomarkers, both before and after an 8-week exercise intervention, which includes stretching, aerobic exercise, resistance exercise and sports games. The results indicate that exercise training beneficially affects body compositions, especially percentage body fat and muscle mass, without influencing to body weight and height. The results of the physical fitness tests show that muscle and cardiovascular capacity were increased in obese children in response to exercise training. Simultaneously, the exercise training decreased circulating levels of C-peptide, which equated to a "large" effect size. Although there were no significant effects on the levels of IGF-1 and resistin, they show a "small" effect size. Therefore, our findings suggest that the exercise intervention have beneficial effects on body composition and physical fitness levels in obese children, whichmight be associated with the decline in circulating C-peptide.

Comparative secretome analysis of human follicular dermal papilla cells and fibroblasts using shotgun proteomics

  • Won, Chong-Hyun;Kwon, Oh-Sang;Kang, Yong-Jung;Yoo, Hyeon-Gyeong;Lee, Dong-Hun;Chung, Jin-Ho;Kim, Kyu-Han;Park, Won-Seok;Park, Nok-Hyun;Cho, Kun;Kwon, Sang-Oh;Choi, Jong-Soon;Eun, Hee-Chul
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The dermal papilla cells (DPCs) of hair follicles are known to secrete paracrine factors for follicular cells. Shotgun proteomic analysis was performed to compare the expression profiles of the secretomes of human DPCs and dermal fibroblasts (DFs). In this study, the proteins secreted by DPCs and matched DFs were analyzed by 1DE/LTQ FTICR MS/MS, semi-quantitatively determined using emPAI mole percent values and then characterized using protein interaction network analysis. Among the 1,271 and 1,188 proteins identified in DFs and DPCs, respectively, 1,529 were further analyzed using the Ingenuity Pathway Analysis tool. We identified 28 DPC-specific extracellular matrix proteins including transporters (ECM1, A2M), enzymes (LOX, PON2), and peptidases (C3, C1R). The biochemically-validated DPC-specific proteins included thrombospondin 1 (THBS1), an insulin-like growth factor binding protein3 (IGFBP3), and, of particular interest, an integrin beta1 subunit (ITGB1) as a key network core protein. Using the shotgun proteomic technique and network analysis, we selected ITGB1, IGFBP3, and THBS1 as being possible hair-growth modulating protein biomarkers.

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

Effects of Baicalin on Gene Expression Profiles during Adipogenesis of 3T3-L1 Cells (3T3-L1 세포의 지방세포형성과정에서 Baicalin에 의한 유전자 발현 프로파일 분석)

  • Lee, Hae-Yong;Kang, Ryun-Hwa;Chung, Sang-In;Cho, Soo-Hyun;Yoon, Yoo-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Baicalin, a flavonoid, was shown to have diverse effects such as anti-inflammatory, anti-cancer, anti-viral, anti-bacterial and others. Recently, we found that the baicalin inhibits adipogenesis through the modulations of anti-adipogenic and pro-adipogenic factors of the adipogenesis pathway. In the present study, we further characterized the molecular mechanism of the anti-adipogenic effect of baicalin using microarray technology. Microarray analyses were conducted to analyze the gene expression profiles during the differentiation time course (0 day, 2 day, 4 day and 7 day) in 3T3-L1 cells with or without baicalin treatment. We identified a total of 3972 genes of which expressions were changed more than 2 fold. These 3972 genes were further analyzed using hierarchical clustering analysis, resulting in 20 clusters. Four clusters among 20 showed clearly up-regulated expression patterns (cluster 8 and cluster 10) or clearly down-regulated expression patterns (cluster 12 and cluster 14) by baicalin treatment for over-all differentiation period. The cluster 8 and cluster 10 included many genes which enhance cell proliferation or inhibit adipogenesis. On the other hand, the cluster 12 and cluster 14 included many genes which are related with proliferation inhibition, cell cycle arrest, cell growth suppression or adipogenesis induction. In conclusion, these data provide detailed information on the molecular mechanism of baicalin-induced inhibition of adipogenesis.

Effects of Long-Term Administration of Saengshik on Growth Increment, BMD and Blood IGF-1 Concentration in Growing Rats (장기간의 생식 섭취가 성장기 흰쥐의 성장, 골밀도 및 혈중 IGF-1의 농도에 미치는 영향)

  • Kim, Joong-Hark;Hong, Sung-Gil;Kim, Wha-Young;Jung, Ji-Sang;Hwang, Sung-Ju;Mok, Chul-Kyoon;Park, Mi-Hyoun;Lee, Ju-Yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.439-446
    • /
    • 2007
  • This study was performed to investigate the effect of long-term administration of Saengshik on growth parameters of growing rats. Male Sprague-Dawley rats were fed on AIN-93G basal diets for 12 weeks and assigned to the following groups: rats administrated orally with Saengshik at the dose of 1g/kg/day (1xJS ), 2g/kg/day (2xJS), 4g/kg/day (4xJS) and distilled water (Control). Rats were sacrificed at 4, 8, 12 weeks after oral administration. Bone mineral density (BMD) and bone mineral contents (BMC) were measured by PIXImus densitometry and serum insulin-like growth factor-1 (IGF-1) concentration were determined by using EIA method. Body weight and food intake did not show significant changes within groups for 12 weeks. Physical longitudinal growth indexes, body length and femur length were significantly increased in Saengshik-administered groups at 12 weeks, in which BMD and BMC also significantly increased. Also, in blood IGF-1 level, Saengshik-administered groups were remarkedly higher than control group at 4 week (p<0.001), in which significantly higher at 8 week and 12 week. These results suggest a close relation between administration of Saengshik and increment of longitudingal bone growth. Therefore, as the result of this study, it could be expected that the administration of Saengshik for 12 weeks is helpful to the increase of longitudinal growth and growth factors in rats. Furthermore, we propose that the consumption of Saengshik as dietary supplementation may promote to increase in longitudinal bone growth in growing children.

Alteration of Growth Factor Expression after Acute Ischemic Renal Injury (급성 허혈성 신손상 후 여러 성장인자 발현의 변화)

  • Koe, Yang Sim;Lee, Soo Yeon;Kim, Won;Cho, Soo Chul;Hwang, Pyoung Han;Kim, Jung Soo;Lee, Dae-Yeol
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.687-694
    • /
    • 2003
  • Purpose : Regeneration and repair after ischemic renal injury appears to be modulated by circulating or locally produced growth factors. This study examined the changes of serum insulin like growth factor(IGF-I) and renal expression of IGF-I and II, vascular endothelial growth factor(VEGF), transforming growth $factor-{\beta}$($TGF-{\beta}$), and connective tissue growth factor(CTGF) during the active regeneration period after acute ischemic injury. Methods : Sera and kidney tissue samples(whole kidney, cortex, outer medullae and inner medullae) were obtained before and after one, three, five and seven days of 40 minutes bilateral renal pedicle clamping. Acute renal failure was assessed by measuring the concentration of serum creatinine. Serum IGF-I level was measured by radioimmunoassay. The mRNA expression in kidney was measured by RT-PCR. The distribution of IGF-I and CTGF was detected by immunohistochemistry. Resuts : Serum IGF-I concentration after one day following acute ischemic renal injury was significantly decreased compared to preischemic value. The mRNA levels of IGF-I, IGF-II, $TGF-{\beta}1$ and VEGF in whole kidney were temporally decreased on day one of ischemic injury. IGF-I and IGF-II expressions in outer medullae were significantly decreased on day one after ischemic injury. $TGF-{\beta}1$, CTGF and VEGF expressions were markedly decreased in medullae after one day of ischemic injury compared to other kidney sections. IGF-I was markedly decreased in cortical tubules on day one of uremic rat. CTGF was markedly increased on tubule within three days of ischemic injury. Conclusion : These findings suggest that IGFs, $TGF-{\beta}1$ and CTGF may involve in the pathogenesis or the recovery from acute ischemic renal injury.

Superovulation-Oocyte and Uterine Function (과배란-난자 및 자궁기능)

  • 문영석
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.4
    • /
    • pp.379-384
    • /
    • 1997
  • Superovulation with exogenous gonadotropins creates a spectrum of pre or periovulatory hormonal changes with subsequent detrimental effects on oocyte quality, fertilization, embryo development, implantation and maintenance of pregnancy. Our recent study determined potential roles for insulin-like growth factor-1 (IGF-1) in uterine environment regulation and preimplant tation in the rat. The evidence indicates that IGF-l may play an important role in the main tenance of a receptive uterine environment for embryonic development and the regulation of decidualization. Embryonic loss and failure of implantations following superovulation may be partially attributed to disturbances in uterine IGF-l action as observed in this study. We investigated the effects of superovulatory doses of gonadotropins on frequency of chromosomal a abnormalities of mouse embryos. Chromosome a analysis of mouse zygotes and 8- to 16-cell stage embryos from spontaneously ovulated, 5, 10, and l 15 lU pregnant mare serum gonadotropin (PMSG) superovulated mice was carried out. Aneuploidy, polyploidy and structural chrom- osomal abnormalities were detected among the four groups. However, only polyploidy was correlated with superovulation. In 10 and 15 IV PMSG treated groups, the rate of polypoidy was 2.9% and 10.5%, respectively. Furthermore, there was a dose reponse relationship between the PMSG dose and the incidence of embryonic p polyploidy (P

  • PDF