• Title/Summary/Keyword: Insulation Technique

Search Result 211, Processing Time 0.027 seconds

Analysis of Medium Effect by Gas Pressure and Gap at Surface Discharge of Dry Air (건조공기의 연면방전에서 가스압력과 극간거리에 따른 매질효과분석)

  • Lim, Dong-Young;Min, Gyeong-Jun;Park, He-Rie;Choi, Eun-Hyeok;Choi, Sang-Tae;Bae, Sung-Woo;Rhee, Sang-Bong;Park, Won-Zoo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.86-92
    • /
    • 2013
  • In studies on an alternative insulating gas of $SF_6$ gas, the section of the alternative gas and an insulation technique to improve its low dielectric strength have been reported, but very few attempts have been made at the dependence of a gas pressure and a gap as well as the medium effect in the alternative gas. The purpose of this paper is to analyze the dependence of the gas pressure and the gap at surface flashover voltage in dry air. The dependence is analyzed based on the medium effect. The medium effect by the gas pressure and the gap can be explained by surface roughness of a solid dielectric and an electrode as well as an electric field which decreases due to the correlation between the collision ionization coefficient and the gap, respectively. In addition, an insulation technique which can fabricate a compact eco-friendly gas insulated switchgear is proposed by the results of this paper.

Impulse Tests for a Composite Solid Insulator for High Voltage Superconducting Power Applications (복합고체절연물의 극저온 절연성능 평가를 위한 임펄스 내전압시험)

  • Kim, W.S.;Ryu, S.D.;Hyun, O.B.;Kim, H.R.;Yim, S.W.;Yang, S.E.;Kim, H.S.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.24-27
    • /
    • 2011
  • High voltage insulation in cryogenic environment is one of big issues for development of superconducting power application, such as superconducting fault current limiter, transformer, transmission cable, and so on. We had proposed a composite solid insulator composed of plastics and polymer insulation sheets for a use of high voltage superconducting power applications. It is well known that the G10 FRP keeps its mechanical strength at very low temperature and the PPLP is very good insulator adopted as insulations for superconducting transmission cables. The composition of these two materials will show very good electrical and mechanical properties adequate for the insulation components of superconducting power applications, such as bushing, insulation barrier, and even for a cryostat. Dielectric strengths of prepared samples were measured at the temperature of boiling point of liquid nitrogen at atmospheric pressure, which will be presented in this paper to show a usefulness of this technique.

3 Dimensional Electric Field Analysis for 362kv GIS and Analysis on the effect of particle attached on spacer (362kV GIS 차단부 3차원 전계해석 및 스페이서에 부착된 파티클의 영향 분석)

  • Ryu, Sung-Sic;Seok, Bok-Yeol;Lee, Hyeong-Goo;Kim, Yong-Han;Song, Tae-Hun;Choi, Young-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1773-1775
    • /
    • 2003
  • In this Study, the insulation safety for Closing Resistor and Disconnect Switch(DS) of 362kV GIS was estimated through 3 dimensional electric field analysis. In addition, the basic study to secure the electric insulation design technique was carried out through the research on the effect of a metallic particle which is generated in the GIS. As a result of 3 dimensional electric field analysis, it was found that the insulation capability of Closing Resistor and DS of 362kV GIS is stable electrically. Also, the fundamental data to improve the insulation capability of spacer was obtained by analyzing the maximum electric field according to the attached angle of a metallic particle which is attached on the surface of a spacer.

  • PDF

The Factor Analysis of Airborn Fiber Concentrations at Parking Lots in Seoul (서울 시내 일부 주차장의 공기중 섬유농도에 영향을 미치는 인자 분석)

  • Moon, Ji Young;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.157-167
    • /
    • 1994
  • This study was conducted to analyze the relationship between the types of fiber and its content and the levels of airborne fiber concentrations at eight parking lots where sprayed insulation material was found on the walls and ceilings. Also this study was designed to find the relationship between the levels of airborne fiber concentrations and such variables as air current, humidity, total exhaust volume, surface condition of insulation material and building age. The results obtained were as follows : 1. No significant correlation was found between the levels of airborne tiber concentration and the building age, air current, humidity, total exhaust volume, space and the number of traffics. 2. A significant correlation was found between the levels of airborne fiber concentration and the MMMF content of the insulation material(r=0.7594). However, no significant correlation was found between the levels of airborne fiber concentration and total fiber content of insulation material. 3. The differences of the airborne fiber concentrations among Cateogory 1, 2 and 3 classified by the degrees of surface insulation material maintenance were very significant. 4. Two bulk samples contained 30% crodicolite and 1% anthophylite. The MMMFs, in all parking lots, included mineral wool, cellulose fiber, trace cellulose fiber, trace tiber glass and vermiculite. 5. The mean value and the range of airborne fiber concentrations at 8 parking lots were $0.0239{\pm}0.0095f/cc$ and 0.0054-0.0447 f/cc, respectively. The fiber concentrations of 35 out of 38 samples(92%) were over 0.01 f/cc which is the Environment Administration's recommended asbestos level for the underground space. This study suggests that most of building insulation materials used in Korea, contain MMMF and sometimes asbestos. Currently, MMMF pollution levels may exceed the Environment Administration's recommended level for underground space. It has been found that airborne fiber concentrations increased significantly with MMMF content and with the maintenance condition of surface material. Therefore, it is recommended that a proper management technique should be developed and immediately implemented since the conditions of surface material will be gradually deteriorated due to building age and usage. Since health hazards of the MMMF, similar to those of asbestos, are being gradually acknowledged, a proper management technique which is applicable to control total airborne fiber concentrations, both asbestos and MMMF, be developed and an acceptable indoor air standard be promulgated as early as possible.

  • PDF

A study on the insulation detection for electrical machnes by corona pulse technique (Corona pulse 검출에 의한 전력기기절연진단에 대한-고찰)

  • 성영권;정성계;김왕곤
    • 전기의세계
    • /
    • v.16 no.5
    • /
    • pp.15-18
    • /
    • 1967
  • This paper shows the analysis for mechanisms of corona pulse caused by dielectric breakdown, and for the results of observed values on an actual machines with the this corona pulse technique. Although the above results are not directly related with the generation, numbers or wave of the corona pulse, it may possibly be chanced a judgement of dielectric breakdown and one of better synthetic judgement methods for actual electrical machines.

  • PDF

The measurement of partial discharge for preventive diagnosis in power machinery (전력용 기기의 예방진단을 위한 부분방전측정)

  • 김태성;구할본;임장섭;정우성
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.42-48
    • /
    • 1994
  • The preventive diagnosis technique for power system is being highlighted as a research area for deterioration of insulation in machinery because of high-voltage power system. We make efforts to develop not only diagnosis of aging state but also detection of defects in the initial stage from preventive diagnosis technique. Especially, partial discharge is actively studied as a non-destructive diagnosis technique and very useful because partial discharge measurement reduces damage than conventional diagnosis technique. The loaded stress during this test is smaller than that of other diagnosis techniques. But the continuous research for various complicated analysis method is required because partial discharge has very small signals and its signals have complex forms. In this paper, the measurement of partial discharge was investigated and studied on many specimens with void. We made samples having artificial voids and measured partial discharge. In order to use as a practical diagnosis technique, we studied ways of measurement, measured illustrations and types of partial discharge which could be used in order to diagnose defects of power machinery.

  • PDF

The Evaluation of Energy Saving using Ultrathin Heat Insulation in Railway Electrification Substation (철도전기실의 초박형 액체단열재 적용을 통한 에너지 절감효과)

  • Kim, Hyungchul;Jang, Junghoon;Shin, Sungkwon;Park, Yongsub;Kim, Sangam;Kim, Hyeong Rae;Hyun, Byungsoo;Kim, Jinho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.171-175
    • /
    • 2015
  • In this paper, because of global environmental problems such as energy shortage and abnormal climate, green energy development and energy saving technology development is being magnified. Heat insulation, the most basic and traditional energy saving method, is highly expected. Especially, simple and advanced heat insulation technique based on Nano material is promising future technology. The railway system also requires heat insulation. Especially, traditional heat insulator such as glass wool has been adopted frequently to rolling stock. The heat insulator is also adopted in general railway service buildings. Take account of cost-effective heat blocking performance, the heat insulator shall be adopted in diverse fields such as electric power, railroad, signal and communication. The only and direct solution for this problem is installing heat insulator with outstanding endurance, corrosion resistance and heat resistance to block outer heat Upgrading heat specification of equipment can be a solution, but since price and maintenance cost rise severely, this plan might be incongruous. In this research, energy saving effect of ultrathin heat insulator film was demonstrated by installing the film on roof of electrical room.

Design of Measuring System for Insulation Resistance and Humidity in High-Power XLPE Cables in Operation and the Relationship Between Insulation Resistance and Humidity in the Oversheath (운전 중인 고전력 XLPE 케이블의 절연저항과 습도의 측정 시스템 설계 및 방식층 절연저항과 습도의 상관관계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.179-184
    • /
    • 2016
  • The usual way used by electric power stations to deliver high levels of generated power is via 6.6kV XLPE (or CV) cables. Depending on the manufacturing technique, installation environment, and usage conditions, the deterioration processes of the power cables start from the instant of operation. Cable junctions may break down in three years from the start of operation due to the manufacturing or construction defects. Otherwise they should be in good working order for 20-30 years. When the cable system (the cable itself and cable junctions combined) deteriorates, fire accidents happen due to the dielectric breakdowns. We have invented a device to monitor the deteriorating status of cables at Korean Western Power Co. Ltd. located in Taean, Chungcheongnam-do province. In this paper, we introduce the device hardware. Using the device, we have measured the insulation resistance and humidity in the sheath of the cables. We present, in analysed results, the effect of humidity on insulation resistance in cable sheaths.

Evaluation on Insulation Performance of Traction Motors for a Hybrid Vehicle by Partial Discharge Measurement (부분방전 측정에 의한 하이브리드차량 견인전동기의 절연성능평가)

  • Park, Dae-Won;Park, Chan-Yong;Choi, Jae-Sung;Kil, Gyung-Suk;Lee, Kang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.249-253
    • /
    • 2009
  • This paper dealt with the insulation evaluation by a measurement of partial discharge(PD) on traction motors used in a hybrid vehicle. The PD method has been accepted as an effective and a non-destructive. technique to evaluate insulation performance of low-voltage electric and electronic devices. In this paper, the PD measurement system which was manufactured with a coupling network, a low noise amplifier, and an associated electronics is described. The PD measurement system has the frequency bandwidth of $1[MHz]{\sim}30[MHz]$ at -3 [dB] and the stable sensitivity of 19 [mV/pC] for the traction motor. From the experimental results, discharge inception voltage (DIV) and apparent charge (q) were $1,100[V_{rms}]$ and 105 [pC] for the used motor, and $1,400[V_{rms}]$ and 84 [pC] for the new one. By comparing the DIV and q, we could evaluate the insulation condition for the traction motors.

Review paper: Application of the Pulsed Eddy Current Technique to Inspect Pipelines of Nuclear Plants

  • Park, D.G.;Angani, C.S.;Kishore, M.B.;Vertesy, G.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2013
  • Local wall thinning in pipelines affects the structural integrity of industries, such as nuclear power plants (NPPs). In the present study, a development of pulsed eddy current (PEC) technology that detects the wall thinning of pipelines covered with insulation is reviewed. The methods and experimental results, which have two kinds of probe with a single and double core, were compared. For this purpose, the single and double core probes having one and two excitation coils have been devised, and the differential probe with two Hall sensors has been fabricated to measure the wall thinning in insulated pipelines. The test sample is a stainless steel having different thickness, laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe is driven by a rectangular current pulse, the difference of two Hall sensors has been measured as a resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The double core probe has better performance to detect the wall thinning covered with insulation; the single core probe can detect the wall thinning up to an insulation thickness of 18 mm, whereas the double probe can detect up to 25 mm. The results show that the double core PEC probe has the potential to detect the wall thinning in an insulated pipeline of the NPPs.