• Title/Summary/Keyword: Insulation Strength

Search Result 638, Processing Time 0.028 seconds

Economic Analysis of Optical Communication Control System in High Voltage Magnetizer (고전압 착자기에서의 누전 사고 방지를 위한 광통신 제어시스템의 도입 방안과 경제성 분석)

  • Bae, Young Woo;Kim, Wooju;Hong, June Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.103-117
    • /
    • 2019
  • Demand for high power motors is rapidly increasing as the 4th industry and convergence technology has recently emerged. In order to produce high-strength permanent magnets, the magnets used for magnetization have been increased from DC 300V in the 1970s to DC 2.5kV in the 2010s, Up to DC 10kV in the 2030s, It is expected that higher voltage will be used to magnetize. However, in the case of a magnetizer using an existing electric signal control device, it is necessary to use a control device with a high-voltage insulation function in case a high voltage used for magnetization is leaked to the control device. If a short circuit accident occurs, the controller must be shut down and serious problems such as excessive repair costs arise. In this study, a control system adopting optical communication method instead of electric signal control method is proposed to prevent leakage currents in high-voltage magnetizer. We design a transmitter(Tx) and a receiver(Rx) device for the optical communication control device and implemented a prototype connecting the optical cable. In order to demonstrate the utility of high-voltage magnetizer using the optical communication control device, we analyzed the initial cost and the yearly cost for the years to analyze the net present value. As a result, In the case of the low-voltage magnetizer, the electric signal control method cost less, As the operating voltage of the magnetizer becomes higher. It is confirmed that it takes less cost when the optical communication control device is used.

A Study on the Bonding Performance of COG Bonding Process (COG 본딩의 접합 특성에 관한 연구)

  • Choi, Young-Jae;Nam, Sung-Ho;Kim, Kyeong-Tae;Yang, Keun-Hyuk;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.28-35
    • /
    • 2010
  • In the display industry, COG bonding method is being applied to production of LCD panels that are used for mobile phones and monitors, and is one of the mounting methods optimized to compete with the trend of ultra small, ultra thin and low cost of display. In COG bonding process, electrical characteristics such as contact resistance, insulation property, etc and mechanical characteristics such as bonding strength, etc depend on properties of conductive particles and epoxy resin along with ACF materials used for COG by manufacturers. As the properties of such materials have close relation to optimization of bonding conditions such as temperature, pressure, time, etc in COG bonding process, it is requested to carry out an in-depth study on characteristics of COG bonding, based on which development of bonding process equipment shall be processed. In this study were analyzed the characteristics of COG bonding process, performed the analysis and reliability evaluation on electrical and mechanical characteristics of COG bonding using ACF to find optimum bonding conditions for ACF, and performed the experiment on bonding characteristics regarding fine pitch to understand the affection on finer pitch in COG bonding. It was found that it is difficult to find optimum conditions because it is more difficult to perform alignment as the pitch becomes finer, but only if alignment has been made, it becomes similar to optimum conditions in general COG bonding regardless of pitch intervals.

Dyeing Characteristics and Mechanical Properties of High Tenacity Polyethylene(HTPE) Filament using Solvent Dyes (솔벤트 염료를 이용한 고강도 폴리에틸렌(HTPE) 필라멘트사의 염색성 및 기계적 물성 평가)

  • Lee, Jeong Hoon;Lee, Beom Young;Lee, Seung O;Choi, Kyeong Yong;Ko, Jae Wang;Kim, Jung Su;Kim, Taekyeong;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.105-114
    • /
    • 2017
  • High tenacity polyethylene(HTPE) fiber is one of the most important synthetic fibers which possesses outstanding properties such as low density, excellent surface hardness and scratch resistance, superior electrical insulation and low cost. In this study, we dyed high tenacity polyethylene filaments using three different solvent dyes based on log P calculations. We evaluated the dyeing characteristics of dyed high tenacity polyethylene filaments based on dyeing temperature, dyeing time and concentration of solvent dyes. We also analyzed the tensile strength and elongation properties of dyed high tenacity polyethylene filaments with various dyeing temperature and dyeing times. The optimized dyeing condition can be found at $120^{\circ}C$ for dyeing time of 1 hour with 4%(o.w.f.) of solvent dyes.

Increased Activity of Large Conductance $Ca^{2+}-Activated$ $K^+$ Channels in Negatively-Charged Lipid Membranes

  • Park, Jin-Bong;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.529-539
    • /
    • 1998
  • The effects of membrane surface charge originated from lipid head groups on ion channels were tested by analyzing the activity of single large conductance $Ca^{2+}-activated\;K^+$ (maxi K) channel from rat skeletal muscle. The conductances and open-state probability ($P_o$) of single maxi K channels were compared in three types of planar lipid bilayers formed from a neutral phosphatidylethanolamine (PE) or two negatively-charged phospholipids, phosphatidylserine (PS) and phosphatidylinositol (PI). Under symmetrical KCl concentrations $(3{\sim}1,000\;mM)$, single channel conductances of maxi K channels in charged membranes were $1.1{\sim}1.7$ times larger than those in PE membranes, and the differences were more pronounced at the lower ionic strength. The average slope conductances at 100 mM KCl were $251{\pm}9.9$, $360{\pm}8.7$ and $356{\pm}12.4$ $(mean{\pm}SEM)$ pS in PE, PS and PI membranes respectively. The potentials at which $P_o$ was 1/2, appeared to have shifted left by 40 mV along voltage axis in the membranes formed with PS or PI. Such shift was consistently seen at pCa 5, 4.5, 4 and 3.5. Estimation of the effect of surface charge from these data indicated that maxi K channels sensed the surface potentials at a distance of $8{\sim}9\;{\AA}$ from the membrane surface. In addition, similar insulation distance ($7{\sim}9\;{\AA}$) of channel mouth from the bilayer surface charge was predicted by a 3-barrier-2-site model of energy profile for the permeation of $K^+$ ions. In conclusion, despite the differences in structure and fluidity of phospholipids in bilayers, the activities of maxi K channels in two charged membranes composed of PS or PI were strikingly similar and larger than those in bilayers of PE. These results suggest that the enhancement of conductance and $P_o$ of maxi channels is mostly due to negative charges in the phospholipid head groups.

  • PDF

A Study in the High Temperature Wear and Thermal Shock Resistance of the Functional Gradient Thermal Barrier Coating by Air Plasma Spray with ZrO$_2$ (APS법에 의한 경사기능성 지르코니아 열장벽 피막의 열충격 및 고온내마모 특성에 관한 연구)

  • 한추철;박만호;송요승;변응선;노병호;이구현;권식철
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.272-280
    • /
    • 1997
  • The Thermal Barrier Coation(TBC) to improve the that barrier and wear resistant propenrty in high temperature ofthe aircraftength between the accumlation of the aircraft engine and the automobile engine has usually the two layer structure. One is a creamic top layer for heat insulation and the other is a metal bond layer to facilitate the bond strength between the top ceramic layer and the substrate. But, the coated layers should be peeled off because of the accumulation of the thermal stress by the differance of the thermal expantion coefficient between metal and ceramics in a hrat cyclic environment. In this study, the intermediate layer by plasm spray process was introduced to reduce the thermal stress. The powders of plasm spray coating were the Yttria Stabilized Zirconia (YSZ), the Magnesia Stabillized Zirconia(MSZ) and NiCrAlY. the intermediate layer was sprayed with the powders of the bond cast for the purpose of test were executed. The high temperature wear resistance tends to decreasnceee wear and thermal shock test were exeucuted. The high temperature were resistance of the YSZ TBC is better that of the MSZ TBC. The wearrsistance tends to decrease accoring to incresing the temperature between $400^{\circ}C$to $600^{\circ}C$. The thermal shock life of the 3 layer TBC with YSZ top casting was the most outstanding thermal shock rsisstasnce. This means that the intermediate layer should play an importnat roll to alleviate the diffrerence of the thermal expansion coef frcients between metallic layer and cermics layer.

  • PDF

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings (기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험)

  • Choi, Hyoung-Wook;Lee, Sang-Ho;Choi, Hyoung-Suk;Kim, Tae-Hyeong;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.

A case of Asbestosis, Pleural Effusion and Lung Cancer Caused by Long-Term Occupational Asbestos Exposure (석면분진폭로에 의하여 석면폐증과 늑막삼출액 폐암이 합병된 1예)

  • Jung, Jang-Young;Ahn, Hyeong-Sook;Kim, Jee-Won;Kim, Kyung-Ah;Yun, Im-Goung;Kim, Han-Wook;Choi, Young-Mee;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.6
    • /
    • pp.651-657
    • /
    • 1994
  • Asbestos is widely used in the textile, asbestos cement, construction products, friction material, paper products, insulation products, chemical and plastic products because of its heat resistance, flexibility, tensile strength, and texturability. It is now generally recognized that longterm and excessive inhalation of asbestos dust causes asbestosis, lung cancer, malignant mesothelioma and malignancies in other organs such as cancer of gastrointestinal tract, leukemia, lymphoma. Although eighty thousand tons of asbestos has been annually consumed since 1979 in korea, it has not been reported asbestos and lung cancer by asbestos dust so far, while a case of mesothelioma was officially diagnosis as a occupational disease at 1993. We experienced firstly a case of asbestosis and lung cancer caused simultanously by occupational asbestos exposure 11 years, which was confirmed by chest x-ray, pulmonary function test, chest CT and HRCT, bronchoalveolar lavage, and gallium scan. And so We present a case of asbestosis, pleural effusion and lung cancer with a review literature.

  • PDF

Properties of High Performance Concrete Corresponding to the Replacement Ratio of the Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 고성능 콘크리트의 특성분석)

  • Kim, Seoung-Hwan;Son, Ho-Jung;Pei, Chang-Chun;Han, Min-Cheol;Baek, Joo-Hyun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.669-672
    • /
    • 2008
  • To analyze possibility for high performance concrete that massively displaces blast furnace slag, this study analyzed the characteristics of concrete by blast furnace slag displacement rate changes, and the results are summarized as follows. Firstly, as for fresh concrete characteristics, flow tended to increase and air amount decreased with increase in blast furnace slag displacement rate, and settling time was shown delayed. As for hardened concrete characteristics, in conditions where blast furnace slag displacement rate increased up to 50%, the compressive strength decreased below OPC at early age, however at age 28 days, its level was no less than that of OPC, and as for temperature rise by simple insulation, it decreased as displacement rate increased at early stage of hydration, but in the latter stage, hydration progress slowed down and hydration heat increased.

  • PDF

Analysis of thermal stress and heat transfer due to circulating fluid in ground heat exchanger (지중 열교환기의 순환수에 의한 열응력 및 열전달 거동 분석)

  • Gil, Hu-Jeong;Lee, Kang-Ja;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Bum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.385-395
    • /
    • 2009
  • In this study, a series of numerical analysis has been accomplished on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) in a geothermal heat pump system (GHP) considering the circulating fluid, pipe, grout and soil formation. A finite element analysis program, ABAQUS, was employed to evaluate the temperature distribution on the cross section of the U-loop system involving HDPE pipe/grout/formation and to compare sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system. Especially, the latticed pipe is equipped with a thermal insulation zone in order to reduce thermal interference between the inflow pipe and the outflow pipe. Also, a thermal stress analysis was performed with the aid of ABAQUS. 3-D finite volume analysis program, FLUENT, was adapted to analyze a coupled system between fluid circulation in the pipe and heat transfer and simulate an operating process of the closed-loop vertical ground heat exchanger. In this analysis, the effect of the thermal properties of grout, rate of circulation pump, distance between the inflow pipe and the outflow pipe, and the effectiveness of the latticed HDPE pipe system are taken into account.

  • PDF

Ultra-Precise Polishing of Mica Glass Ceramics Using MR Fluids and Nano Abrasives (MR fluid를 이용한 Mica Glass Ceramics의 초정밀 연마)

  • Beak, Si-Young;Song, Ki-Hyeok;Kim, Ki-Beom;Kim, Byung-Chan;Kang, Dong-Sung;Hong, Kwang-Pyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Mica-glass ceramics has features such as micro-sized crystals, high strength, chemical resistance, semitransparent optical properties, etc. Due to its superior material properties, mica glass ceramics have increasing applications in dental and medical components, insulation boards, chemical devices, etc. In many applications, especially for dental and medical components, ultra-precise polishing is required. However, it is known to be a very difficult-to-grind material because of its high hardness and brittle properties. Thus, in this study, a newly developed ultra-precise polishing method is applied to obtain nano-level surface roughness of the mica glass ceramics using magnetorheological (MR) fluids and nano abrasives. Nano-sized ceria particles were used for the polishing of the mica glass ceramics. A series of experiments were performed under various polishing conditions, and the results were analyzed. A very fine surface roughness of Ra=6.127 nm could be obtained.