• Title/Summary/Keyword: Insulation Performance of Window

Search Result 126, Processing Time 0.028 seconds

The Evaluation of the Temperature Characteristics at the Spendrels of Curtain wall with a-Si BIPV Window System (스팬드럴 부분 BIPV창호 적용 및 후면마감재 구성에 따른 온도특성 분석 연구)

  • Kim, Dong-Su;Oh, Myung-Hwan;Yoon, Jongl-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.165-170
    • /
    • 2012
  • This study aims to analyze the characteristics of temperature variation of Spandrels. According to the change of SHGC of Window system, air space, insulation performance and absorption factor of inner surface at the Spandrels, It was firstly estimated by using simulation. Secondly, measured to minimize the temperature-rise of inner surface temperature and the intermediate air temperature by using Full-scale Mock-up based on the result of simulation analysis. As a result, it turns out that low SHGC window system such as BIPV system had an advantage of reducing the window surface temperature, and the surface temperature of clear window system was all higher than BIPV system on simulation results. In the experiment results, it had some advantages of increasing the Spandrels volume, decreasing insulation performance and lower absorption factor.

  • PDF

The Energy Performance Evaluation of Multi-purpose Solar Window System (다기능 복합 솔라윈도우 시스템의 에너지성능평가)

  • Cho, Yil-Sik;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

The Study of Thermal Performance on Solar Window (다기능 솔라윈도우의 열성능 연구)

  • Cho, YilSik;Kim, Janghoi;Yang, Yoonsub;Kim, ByoungSoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in Heating/cooling performance analysis. The reference model of simulation was made up to analysis Heating/cooling performance on Solar Window. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

  • PDF

A study on the Insulation Performance of the Super Window applied to building energy efficiency rating (초단열 슈퍼윈도우의 건물에너지효율등급 적용 연구)

  • Jang, Cheol-Yong;Kim, Chi-Hoon;Ahn, Byung-Lip
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.205-210
    • /
    • 2009
  • Generally, the building's windows and ventilation for the purpose of mining and the vista and windows by emotional engineering design area is a growing trend. According to the flow of energy is lost from the building, will be achieved through the walls and roof and windows. Among these, the window through the loss of about 45% of the entire building is big enough to rate. In addition, the building regulation U-value Limitation of window is $3.3W/m^2$ K in southern regions, while U-value Limitation of wall is $0.35{\sim}0.58W/m^2$ K. It means that the energy loss through windows is six times more than it through wall. Therefore, the purpose of this study is to evaluate the environmental performance of the super window system by verification experiment. The results of this study are as follows; 1)Thermal performance of insulated Super Window measured as $1.44W/m^2$ $^{\circ}C$ 2)Required energy for heating was cut down about 5.3% from 266.99 $MJ/m^2$ yr to 252.85 $MJ/m^2$ yr 3)Super Window's reduction rates increased 4.1% from 31.48% to 35.58% when it is compared to normal windows. 4)Building energy efficiency rating elevated from 2nd rating to 1st rating.

  • PDF

Preparation and characterization of nanoporous monolith with high thermal insulation performance (나노 기공성 단열 실리카 모노리스 제조 및 특성 연구)

  • Choi, Hyun-Muk;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • In this study, we synthesized two different silica monoliths by using sol-gel, solvent exchange, surface modification, ambient pressure drying processes, and surfactant-based templating technique followed by calcination process. All of the prepared two silica monoliths showed crack-free appearance with fairly good transparency, and furthermore were confirmed to have extremely high porosity, specific surface area, and mean pore size below 30 nm. The silica aerogel sample exhibited finer and more homogeneous nano-sized pore structure due to spring back effect caused by surface modification, which resulted in better thermal insulation performance. Based on measured thermal conductivities and theoretical relationship, multi-layered glass window system in which silica monolith prepared in this study was inserted as a middle layer was revealed to have superior thermal insulation performance compared to conventional air-inserted glass window system.

A Study on the Evaluation of Building Energy Rating considering the Insulation Performance of the Window and Wall in Apartment Houses (창호 및 벽체의 단열성능에 따른 건물에너지효율등급 평가 연구 -공동주택을 중심으로-)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Kim, Ji-Yeun;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.608-613
    • /
    • 2009
  • According to the building regulation U-value limitation of window is $3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is $0.35{\sim}0.58W/m^2{\cdot}K$. It means that the energy loss through windows is five times more than it through wall. Therefore, this study analyze how much it has affected building energy rating when the insulation performance of windows and walls is changed by building regulation. In conclusion, in order to obtain 2 rating thermal performance of windows is improved more than 10 percent of U-value limitation and it of wall is improved more than 20 percent. The thermal performance of windows is improved more than 20 percent of U-value limitation and it of wall is improved more than 30 percent to receive 1 rating.

  • PDF

Study on the Test Methods and Performance Criterion of High Insulated Door (고기밀.고단열 문의 성능평가 및 기준설정에 관한 연구)

  • Kang, Jae-Sik;Choi, Gyoung-Seok;Kim, Kyoung-Woo;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.618-622
    • /
    • 2009
  • About a Structure is performance insulation include air-tight is fundamental performance for energy-saving. The Apartment house of permission balcony enlarged to increase the requirement of market of high-effective door. Since 2001 years the window and wall of insulation performance stronger frailty than keep up performance insulation that increase influence building energy generated heat loss at door. In study on presentation that high-insulation, air-tight door about experimental method and performance standard.

  • PDF

A Comparative Analysys of Window Energy Performance According to the Difference Between Actual size and Standard size (창호의 성능인증 규격 기준과 면적 변화에 따른 에너지성능 비교분석)

  • Kim, Seong-Beom;Lee, Su-Yeul;Kim, Dong-Yoon;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • This study reviewed selected specific windows and reviewed the window performance certification criteria including KS F 2278 and KS L 9107 and analyzed the change in performance based on the change of area. This study also compared the heating and cooling loads of an apartment house applied with window performance reviewed in consideration of insulation and SHGC performance and actual size based on KS F 2278. The analyzed window was a double window composed of aluminum and PVC and the building was the apartment house model of 141 ㎡. The analysis results were as follows. First, as the window glass's thermal performance is superior to frame, the performance degraded in reduced area. In case of selected window, the 1 m × 1m window's thermal performance and SHGC decreased by 35% and 37% respectively compared to 2 m × 2 m window. Secondly, in the comparison of performance for increasing area with 2 m × 2 m and 3 m × 3 m windows, the 3 m × 3 m window's thermal performance and SHCG increased about 14%. Third, in the comparison of heating and cooling loads of the analyzed model considering the apartment house model applied with window performance derived from KS F 2278 and actual figures, the model's total heating and cooling loads increased by 33% with cooling decreasing by 36% and heating increasing by 77%. Above analysis results show that evaluation of window performance based on criteria such as KS F 2278 and KS L 9107 may lead to distortion of performances different from actual products. Thus, it is necessary to suggest new evaluation criteria.

A study on the Sound Insulation Characteristics of Korean Traditional Windows (전통창호의 차음 특성에 관한 연구)

  • Kim, Hang;Lee, Tai-Gang;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1147-1150
    • /
    • 2007
  • Korean traditional houses have been developed in sympathy with natural environment and formed comfortable indoor condition by properly using surrounding natural resources including building layout, space construction and material. Or traditional wooden windows adjusting ambient temperature and humidity have both the functions of window and door, although they are clearly divided in the West. While window paper is attached from the outside in China and Japan, it is attached from the inside in Korea. The opening and closing mode of windows is similar and their dimensions are shown not to be standardized but diverse in terms of the characteristic of wooden furniture and that of components placed between columns. Thus this study is to look into the performance of band-lattice door of a typical traditional one by observing changes in sound insulation characteristics according to difference in thickness and finishing method of window paper and those in sound insulation characteristics with the changed thickness of air layer in traditional windows and doors.

  • PDF

A Study on Life Cycle Cost Analysis of Thermal Bridge Barrier Between Window Frame and Concrete Wall (건축물의 창틀과 벽체 사이 열교방지공법의 LCC 분석)

  • Park, Cheol-Yong;Kim, Woong-Hoi;Lee, Sang-Hee;Nam, Seung-Young;Yoon, Gil-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.59-60
    • /
    • 2019
  • Thermal bridge on a building envelope causes additional heat loss which increases the heating energy consumption. As the higher building insulation performance is required, heat loss through thermal bridge becomes higher proportion among total building heating energy consumption. For the exterior insulation and finish system, thermal bridge between window frame and concrete wall should be constidered as one of main reasons of heat loss. In this study, the thermal bridge barrier between window frame and concrete wall(STAR) was proposed as the best practice for reducing thermal bridge. The STAR was confirmed that the use of thermal bridge barrier imporved the annual heat energy capacity by 35% or more and the innitial construction cost by 7.4% or less because of additional interior insulation against condensation. Finally the life cycle cost during 20 year by heating energy of a building reduced by 25% or more compared with the exist technology. This STAR thermal bridge barrier will be used as the main technology to improve the energy efficiency of building.

  • PDF