• Title/Summary/Keyword: Insulation Efficiency

Search Result 321, Processing Time 0.027 seconds

Improvement of Sound Transmission Class in the Front Door of Apartment (공동주택의 현관문 차음성능 개선을 위한 연구)

  • Lee, Byung-Kwon;Bae, Sang-Hwan;Hong, Cheon-Hwa;Song, Man-Soo;Jung, Mun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • In the case of the front door of the apartment, which functions as an entrance, the study about noise has been less active than corridor type plane in the past, since stair room type plane was generalized. Hence, this study shows the survey about residents' thoughts of noise transmission through the front door, and after researching sound insulation of the present apartments, we figured out what the problem is. Moreover, we did an efficiency test as developing the front door, which increases sound insulation. As a result, it turned out that residents think that the noise transmission through the front door is as serious as floor impact noise, and also, the efficiency of the front door is as poor as STC 22-30. Therefore, in the developed front door, we should improve the efficiency to the level of STCSS. It will be a good way preparing for a demand of residents.

  • PDF

An Experimental Study on a Performance Evaluation of Internal Insulation of Buildings Over 20 Years Old (20년 이상 경과된 노후건축물의 단열재 성능평가에 관한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Recently, the international community signed a climate change agreement to prevent global warming. Yet currently, the fossil fuels have been widely used in to supply building energy for cooling and heating. The Green Building certification (G-SEED), an energy efficiency rating for new or existing buildings requires that buildings meet certain conditions. Insulation is used as a building material to reduce the energy supply to buildings and to improve the thermal insulation, and it accounts for more than 90% of the total heat resistance provided by the building surface components that meet the energy-saving design standards of new buildings. In this investigation, a performance evaluation study was conducted through an experimental study by directly extracting the foam polystyrene insulation on-site during the remodeling of a building that was in the range of 22~38 years old. Through tests, it was found that the thermal conductivity of the extrusion method insulation (XPS) was reduced by 48% and the compressive strength of XPS decreased by 36% compared to KS M 3808, which is the initial quality standard. For bead method insulation (EPS) with a thickness of 50mm, the thermal conductivity, the compressive strength, and flexural failure load were similar to the initial quality standard. Therefore, in the calculation of the primary energy requirement per unit area per year, the performance of bead method insulation can be estimated simply by considering the thickness of the insulation, while a correction factor that considers its performance deterioration should be applied when extrusion method insulation is used.

A Study on the Energy-saving Variation by the Reduction of Insulation Boundary in Mixed-use Building (주상복합건물에서 단열 경계구역 축소에 따른 에너지 절감량 변화에 관한 연구)

  • Kim, Dae-Won;Kim, Young-Il;Kim, Sung-Min;Cho, Jin-Hwan;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.152-157
    • /
    • 2012
  • Due to the global warming and energy exhaustion, energy efficiency improvement of construction is recognized the stream of times. To improve the efficiency of the building, in order to energy saving, passive elements should be applied. Then the first step be supposed that applying the new standards about the insulation boundary. The current insulation boundary standards are not reasonable as well as does not divide the purposes. As a result, energy is being wasted and many civil complaints are also occurred. To improve these problems, applying the insulation boundary need to divide the heating and non-heating and subdivide the purpose of construction. In this study, accurate real heating and air conditioning areas are presented that work on the new insulation boundary of purposes and applicable standards. This proposed, by the real heating and air conditioning areas, insulation boundary of purposes, matching the reasonable capacity and load of equipment, by working on standards by optimal maintenance can be energy saving, to present guidelines that environment improvement of actual residents as well as energy saving be expected.

An Experimental Study on the Improvement of Insulation Performance in Old University Buildings and Economic Evaluation (노후화된 대학 건물의 단열성능 향상 실험 및 경제성 평가)

  • Lee, Jeongmin;So, Wonho;Cho, Kyungchan;Choi, Dongnyeok;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.287-297
    • /
    • 2020
  • This study examined ways of improving the internal insulation performance of aging university buildings, and to enhance the convenience of occupants in university buildings and the insulation effect of aging buildings. This research was conducted to solve the problem of continuous requests for improving the insulation performance of office workers in the Nehemiah Hall building of Handong University. The results showed that the internal temperature of Nehemiah Hall was low compared to the internal temperature of the adjacent building. Considering the characteristics of the building, the university chose insulating materials under the theme of internal insulation. The experiment was conducted by installing internal wall insulation used in the market by producing a model room that miniaturized the university professor's office. Based on the experimental results, an economic evaluation was conducted to analyze the insulation effect by measuring the heating time and actual heat transmission coefficient. An economic evaluation was conducted by experiment and theory and on a winter and summer basis. According to the research, when an Isopink (30 T) was introduced as an internal insulation material in 60 offices of Nehemiah Hall, it could save up to 1,071,600 won in total during the winter season and 109,200 won during the summer season.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

A Study on the Development of Super Low-loss Type Pole Transformer Using the Hybrid Insulation (혼합절연을 이용한 초저손실급 주상변압기 개발에 관한 연구)

  • Min, Yun-Hong;Shin, Dae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.84-93
    • /
    • 2007
  • The pole transformer is one of the most important facility to insure the stability of electric power supply. which distributes electricity to customers directly. However there are a lot of defects which are caused by manufacturing fails(in 3 years) or deterioration (in 13 years), so we need a more improved transformer which insures quality. This thesis talks about the development of the new-type transformer using the hybrid insulation that is durable thermally, mechanically, and electrically. It would show how to lay out and produce the transformer using the hybrid insulation. And finally we are sure that we could increase the utilization rate of a transformer by 160% as compared with its own capacity through the overload test. Also, we carried out the examination about the short-circuit and insulation with a 100[kVA] model transformer, so that we expound the analysis of magnetic-mechanical forces intensity and the measure for improving short-circuit efficiency.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test (가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

Analysis of Thermal Insulation Performance Based on Material Combinations for Carbon Reduction Insulating Concrete (탄소저감을 위한 단열콘크리트 재료 조합에 따른 단열성능 분석)

  • Himan Lee;Jaekyung Lee
    • Land and Housing Review
    • /
    • v.15 no.3
    • /
    • pp.189-198
    • /
    • 2024
  • This study analyzes the thermal performance of insulating concrete based on material combinations aimed at carbon reduction. The study compares the thermal and structural properties of insulating concrete enhanced with perlite and EPS (Expanded Polystyrene) beads to conventional concrete, with a focus on the impact of insulation properties on thermal conductivity. The results indicate that the content of EPS beads is critical to the insulating performance, and increased moisture absorption significantly reduces the energy efficiency of the insulating concrete. These findings provide valuable insights for the design and application of insulating concrete to enhance energy efficiency and reduce carbon emissions. This study offers guidance for further developing insulating concrete as a carbon-reducing building material.