• Title/Summary/Keyword: Insulation Degradation

Search Result 230, Processing Time 0.028 seconds

The Design of a Planar Patch Sensor for Partial Discharge Diagnosis in 6.6 kV Rotating Machine Stator Windings (6.6 kV 회전기 고정자 권선에서 부분방전 신호 검출을 위한 평면 패치 센서 설계)

  • Lim, Kwang-Jin;Park, Noh-Joon;Kim, Hee-Dong;Ju, Young-Ho;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.481-485
    • /
    • 2008
  • In stator windings of 6.6 kV rotating machine, corona discharge, surface discharge and internal discharge are caused mainly by internal voids and insulation degradation. Also, if partial discharge occurs in inner-part of stator windings, it will be happened electromagnetic pulses at wide frequency range. In case of discharge spark, electromagnetic pulse generated from discharge source, and we can detect it by using various RF resonators as an EM sensor. In order to detect these kind of electromagnetic sources, we have designed and fabricated planar patch sensor using CST MWS simulation, and also PD signals from artificial defected cable were measured by our proposed sensor. Furthermore, HFCT was used as a reference sensor and compared with our proposed new planar patch sensor.

A Study on Optimal Design According to Change of Coil Distribution in Slot Less Type Permanent Magnet Synchronous Motor (소형 Slot less PMSM의 coil 배치에 따른 최적 설계 및 열 내구성 분석)

  • Kim, Yong-Tae;Go, Duk-Hwa;Gim, Gyu-Hwa;Baek, Sung-Min;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • In this paper, slot less type high-speed and compact motor was designed. it was selected through change of stator coil distribution for the optimal performance of the motor. In this paper, designed motor was expected to be very vulnerable to heat dissipation in a compact motor. Therefore, to ensure reliability in the design result, winding and permanent magnet damage caused by the losses of motor was analyzed by thermal analysis and demagnetization analysis. Using the result, whether motor burnout was confirmed by motor performance degradation and insulation breakdown.

A Case Study of Degradation Characteristics for Rod-Insulator on Catenary System in Electric Railway (전기철도 전차선로 지지애자의 염해지역 열화특성 사례 연구)

  • Jung, Hosung;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.263-266
    • /
    • 2019
  • In the Airport Railroad, the Yeongjong Bridge has a length of 4,420 m and connects Yeongjong Island with the mainland of Incheon City. The bridge is a two-level structure, consisting of a six-lane road at the upper level and a combination of a road and railroad at the lower level. The environmental conditions for the electric railway come mainly from the salt injury area and a heavy industry zone, and the maintenance cycles are determined differently depending on these conditions. This study analyzed the deterioration characteristics of long rod insulators produced with a movable ceramic bracket and polymer materials in the Yeongjong Bridge section of the Airport Railway operating in the salt injury area according to the material characteristics. Comparison of the corona measurements when the insulators were cleaned at the same time showed that the polymer insulator had a higher insulation performance than the ceramic insulator.

Alternative Selection Method for Energy Efficiency Improvement of Old Detached House (노후 단독주택의 난방에너지 효율 개선을 위한 대안 선정 방법에 관한 연구)

  • Hwang, Seok-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.45-55
    • /
    • 2019
  • More than 76% of the detached houses in Korea are over 20 years old. These old detached houses have poor energy efficiency. According to the 2017 Housing Census (Statistics Korea), more than 50% of low-income families live in detached houses. Therefore, the improvement of energy efficiency in old detached houses is needed from the viewpoint of energy welfare. The general method of building energy modelling for the verification of energy efficiency is based on the construction year data of "Building Design Criteria for Energy Saving" due to the cost and time involved in collecting the thermal performance data of buildings. There is poor accuracy with the deterioration of long-term aging of building materials. Also, the selection of alternatives for energy performance improvement is based on the items to be applied, not a performance improvement goal. It is difficult to calculate energy performance that reflects variations in various parameters with dynamic energy simulations. In this study, the influence of long-term aging is used to accurately predict the energy performance of old detached houses. The building energy modelling method is called ENERGY#, which is a static analysis method based on ISO13790. Energy performance is evaluated by a combination of input variables including building orientation, insulation of walls and roof, thermal performance of windows and window/wall ratio, and infiltration rate. Finally, this study provides a way to determine alternatives that meet energy performance improvement goals.

Thermal Characteristics and Cooling Experiments and Analysis of Finite Elements in the Discharge of Lithium-Ion Batteries (리튬이온 배터리 방전 시 발열 특성 및 냉각 실험과 유한요소 해석)

  • Seokil Kim;Shin You Kang
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • Lithium-ion batteries are predominantly employed in electric vehicles and energy storage devices, offering the advantage of high energy density. However, they are susceptible to efficiency degradation when operated at high temperatures due to their sensitivity to the external environment. In this study, we conducted experiments using an indirect cooling method to prevent thermal runaway and explosions in lithium-ion batteries. The results were validated by comparing them with heat transfer simulations conducted through a commercial finite element analysis program. The experiments included single-cell exothermic tests and cooling experiments on a battery pack with 10 cells connected in series, utilizing 21700 lithium-ion batteries. To block external temperature influences, the experimental environment featured an extrusion method insulation in the environmental chamber. The cooling system, suitable for indirect cooling, was constructed with copper tubes and pins. The heat transfer analysis began by presenting a single-cell heating model using commercial software, which was then employed to analyze the heating and cooling of the battery pack.

A Study on Fire Hazard by Metallic Migration (금속 마이그레이션에 의한 화재 위험성 연구)

  • Choi, Gyeong Won;Hyun, Byoung Soo;Kim, Sun Jae;Lim, Kyu Young;Woo, Seung Woo;Lee, Dong Kyu;Cho, Young Jin;Park, Jong Taek;Goh, Jae Mo;Park, Nam Kyu
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.114-119
    • /
    • 2019
  • We found metallic migration phenomena at the fire scene in Printed circuit board (PCB) of LED light equipment which are commonly used. Accordingly we did this study. In order to generate rapidly metallic migration, we experiment the water drop test under low voltage (3.0 V) and a small amount of water condition. As a results of our experiment, we saw the growth of metallic migration of Copper and checked directly short of the PCB between isolated two poles by Cu migration. Finally we saw the shape of dendrite pattern by Cu migration using Scanning electron microscope (SEM) and analyzed that components via Energy dispersive Spectrometer (EDS).

A Study on the Reliability Prediction about ECM of Packaging Substrate PCB by Using Accelerated Life Test (가속수명시험을 이용한 Packaging Substrate PCB의 ECM에 대한 신뢰성 예측에 관한 연구)

  • Kang, Dae-Joong;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, $20/20{\mu}m$ pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.

Numerical Study of the Effect of Fan Arrangement on the Cooling Performance of the ONAF Type Radiator for Power Transformer (변압기용 ONAF 방식 방열기의 팬 배치에 따른 냉각특성 연구)

  • Kim, Kuk-Kyeom;Suh, Yong Kweon;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.449-455
    • /
    • 2015
  • Owing to the trend of an increase in capacity and high-efficiency requirement, the life and reliability of power transformer depend significantly on the amount of heat generation per unit volume and the degradation of insulation oil. These problems can be solved by enhancing the cooling performance of the radiator. The purpose of this study was to find a suitable position of fans for a better cooling effect given by the forced-convection of air in an ONAF (Oil Natural Air Forced) type transformer. In the simulation, commercial software was used for flow analysis, and the cooling passage of the oil was simplified to shorten the time taken for computation. With the diameter of the fan fixed at a constant value, the analysis was performed only by changing the position of the fans. As a result, a vertical position change of the fans does not affect the cooling performance significantly. However, the temperature drop given by the fans positioned on the front region of the transformer is larger than that on the rear region.

A Review of the Physical Performance of Lightweight Aerated Concrete for Use as an Interior Core Material in Fire Doors (방화문 내부 심재로 적용하기 위한 경량기포콘크리트의 물리적 성능 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.111-112
    • /
    • 2023
  • With the development of cities, the density of the population is continuously increasing as buildings become larger and more high-rise, but since the Haeundae residential complex fire in Busan in 2010, there has been a growing need to meet the fire protection performance of buildings as large-scale fires continue to occur every year. On the other hand, fire doors, which are one of the fire protection performance of buildings, have been judged unqualified in 82% of cases when fire doors constructed on the actual site were inspected after completion. The reason for this is that paper honeycomb and glasswool, which are used as core materials for fire doors, absorb moisture, reducing thermal insulation performance, and sagging due to increased weight, leading to performance degradation due to warping in empty spaces. To overcome these problems, research is underway to apply lightweight aerated concrete, an inorganic material, as a core material. Therefore, in order to select a blowing agent that produces stable bubbles prior to the production of lightweight bubble concrete for application as a fire door inner core, this study examined the physical performance according to the type of blowing agent and dilution concentration, and the following conclusions were drawn. Compared to vegetable bubbles and independent bubbles, synthetic bubbles have 3~8% higher thermal conductivity than independent bubbles, but 3~6% lower slurry density than vegetable bubbles, and 2~13% higher compressive strength, which is thought to be an improvement of synthetic bubbles.

  • PDF

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.