• 제목/요약/키워드: Insulating concrete

검색결과 71건 처리시간 0.027초

수열합성법을 이용한 무기계 단열소재 제조방법 및 특성에 관한 연구 (1) (A Study on Fabrication and Characterization of Inorganic Insulation Material by Hydrothermal Synthesis Method (1))

  • 서성관;추용식;이종규;송훈;박재완
    • 한국건설순환자원학회논문집
    • /
    • 제1권3호
    • /
    • pp.219-224
    • /
    • 2013
  • 본 연구에서는 규석, 시멘트, 생석회 및 소량의 무수석고를 사용하여 미네랄 하이드레이트 단열소재를 제조하였다. 슬러리의 특성 분석을 선행한 후, $CaO/SiO_2$ 몰비 변화에 따른 배합설계를 통해 최적 배합비를 도출하였다. 도출된 배합 설계비를 기준으로 혼합수 함량 및 수열합성 조건에 따른 소재의 특성을 측정, 평가하였다. 초적 조건으로 제조된 미네랄 하이드레이트 소재의 특성은 각각 밀도 $0.26g/cm^3$, 압축강도 0.4MPa, 열전도율 0.064W/mK로 나타났다. 이는 기존의 ALC(Autoclaved Lightweight Concrete) 소재의 성능을 한층 개선한 결과로서, 향후 지속적인 열적특성 개선 연구를 수행하여 유기 및 무기 단열재를 대체하여 새로운 개념의 무기계 단열재로 사용 가능할 것이라 판단된다.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

경량 기포 콘크리트의 레올로지 특성이 소포억제에 미치는 영향 (Influence of Rheological Properties of Lightweight Foamed Concrete on Preventing Foam Collapse)

  • 이향선;전종운;조무진;기성훈;한동엽
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.304-310
    • /
    • 2018
  • 본 연구에서는 경량 기포 콘크리트의 부피 안정성을 확보하기 위해 소포를 저감시킬 수 있는 요소들을 레올로지 특성을 연계하여 분석하였다. 실험계획으로는 비빔시간, 물-결합재비, 증점제, 기포제, 폐지 첨가량에 대한 변화로 각 요인을 통해 실험하였다. 먼저 과도한 비빔과 기포제의 첨가량에 의해 발생한 다량은 기포는 슬러리 내에서 불안정한 상태로 존재하여 침하를 발생시킨다. 특히 기포제의 경우 계면활성제로써 물에 영향을 미치므로 배합 계획 시 물에 대한 질량비로 계획해야할 것으로 판단된다. 또한 레올로지 특성을 통해 경량 기포 콘크리트의 소성점도와 소포량이 반비례관계를 가진 것을 확인할 수 있었다. 따라서 본 연구의 결과는 경량 기포 콘크리트의 소포를 저감시킬 수 있는 요소들을 분석함으로써 경량 기포 콘크리트의 배합 조건에 대한 기초적인 자료를 제공될 것으로 판단된다.

Predicting the moment capacity of RC slabs with insulation materials exposed to fire by ANN

  • Erdem, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.339-346
    • /
    • 2017
  • Slabs prevent harmful effects of fire that may occur in any floor. However, it is necessary to protect the slabs from fire. Insulation materials may be appropriate to protect reinforced concrete (RC) slab from elevated temperature. In the present study, a model has been developed in artificial neural network (ANN) to predict the moment capacity ($M_r$) of RC slabs exposed to fire with insulation material. 672 data were obtained for ANN model through author's prepared program. Input layer in model consisted of seven input parameters; such as effective depth (d), ratio of d'/d, thermal conductivity coefficient ($k_{insulation}$), insulation materials thickness ($L_{insulation}$), reinforcement area ($A_{st}$), fire exposure time ($t_{\exp}$), and concrete compressive strength ($f_c$). The predicted $M_r$ by ANN was consistent with the obtained $M_r$ by author. It is proposed to ease computational complexity in determining $M_r$ using ANN. The effects of using insulation material on the moment capacity in RC slabs were also investigated. Insulating material with low thermal conductivity has been found to be more effective for durability to high temperature.

청과물저장고의 구조특성 및 냉각부하량 산정에 관한 연구 (A Study on the Structural Characteristics and Estimation of Refrigerating. Load for the Fruit Storage)

  • 이석건;고재군
    • 한국농공학회지
    • /
    • 제18권1호
    • /
    • pp.4038-4051
    • /
    • 1976
  • This study was intended to provide the basic design creteria for the refrigerated storage, and to estimate the required optimum capacity of refrigerator for the different sizes and kinds of the existing fruit storage. The structural characteristics of the existing fruit storages in Pyungtaek-khun of Kyungki-do were surveyed. The average out-door air temperature during the expected storage life after harvesting, was obtained by analyzing the weather information. The heat transfer rates through the different models of storage walls were estimated. The refrigerating load required for different models of fruit storage was analyzed in the basis of out-door air temperature. The results obtained in this study are summarized as follows: 1. The fruit storages surveyed were constructed on-ground, under-ground and sub-ground type buildings. The majority of them being the on-ground buildings are mostly made of earth bricks with double walls. Rice hull was mostly used as the insulating materials for their walls and ceilings. About 42% of the buildings were with the horizontal ceiling, 22% with sloped ceiling, and about 36% without ceiling. About 60% of the storage buildings had floor without using insulated material. They were made of compacted earth. 2. There is no difference in heat transfer among six different types of double walls. The double wall, however, gives much less heat transfer than the single wall. Therefore, the double wall is recommended as the walls of the fruit storage on the point of heat transfer. Especially, in case of the single wall using concrete, the heat transfer is about five time of the double walls. It is evident that concrete is not proper wall material for the fruit storage without using special insulating material. 3. The heat transfer through the storage walls is in inverse proportion to the thickness of rice hull which is mostly used as the insulating material in the surveyed area. It is recommended that the thickness of rice hull used as the insulating material far storage wall is about 20cm in consideration of the decreasing rate of heat transfer and the available storage area. 4. The design refrigerating load for the on-ground storages having 20 pyung area is estimated in 4.07 to 4.16 ton refrigeration for double walls, and 5.23 to 6.97 ton refrigeration for single walls. During the long storage life, however, the average daily refrigerating load is ranged from 0.93 to 0.95 ton refrigeration for double walls, and from 1.15 to 1.47 ton refrigeration for single walls, respectively. 5. In case of single walls, 50.8 to 61.4 percent to total refrigerating load during the long storage life is caused by the heat transferred into the room space through walls, ceiling and floor. On the other hand, 39.1 to 40.7 percent is for the double walls. 6. The design and average daily refrigerating load increases in linear proportion to the size of storage area. As the size increases, the increasing rate of the refrigerating load is raised in proportion to the heat transfer rate of the wall. 7. The refrigerating load during the long storage life has close relationship to the out-door air temperature. The maximum refrigeration load is shown in later May, which is amounted to about 50 percent to the design refrigerating load. 8. It is noted that when the wall material having high heat transfer rate, such as the single wall made of concrete, is used, heating facilities are required for the period of later December to early February.

  • PDF

기포제 혼입 단열형 경량모르타르의 물리적 특성 및 압축강도 추정에 관한 기초적 연구 (Fundamental Study on Estimating Compressive Strength and Physical Characteristic of Heat insulation Lightweight Mortar With Foam Agent)

  • 민태범;우영제;이한승
    • KIEAE Journal
    • /
    • 제10권3호
    • /
    • pp.89-96
    • /
    • 2010
  • In comparison with ordinary or heavy-weight concrete, light-weight air void concrete has the good aspects in optimizing super tall structure systems for the process of design considering wind load and seismic load by lightening total dead load of buildings and reducing natural resources used. Light-weight air void concrete has excellent properties of heat and sound insulating due to its high amount porosity of air voids. So, it has been used as partition walls and the floor of Ondol which is the traditional Korean floor heating system. Under the condition of which the supply of light-weight aggregates are limited, the development of light-weight concrete using air voids is highly required in the aspects of reduced manufacturing prices and mass production. In this study, we investigated the physical properties and thermal behaviors of specimens that applied different mixing ratios of foaming agent to evaluate the possibility of use in the structural elements. We proposed the estimating equation for compressive strength of each mix having different ratio of foaming agent. We also confirmed that the density of cement matrix is decreased as the mixing amount of foaming agent increase up to 0.6% of foaming agent mixing ratio which was observed by SEM. Based on porosity and compressive strength of control mortar without foaming agent, we built the estimating equations of compressive strength for mortars with foaming agent. The upper limit of use in foaming agent is about 0.6% of the binder amount. Each air void is independent, and size of voids range from 50 to $100{\mu}m$.

폐타이어 칩의 바닥충격음 차단성능에 관한 실험적 연구 (The Experimental Study on the Impact Sound Insulation Floors due to Waste Tire Chip)

  • 양관섭;이세현;김홍열;김승민
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.477-484
    • /
    • 1999
  • This study aims to present proper thickness of resilient mount and pattern of chips for the improvement of impact sound isolation. To achieve this aim, field tests were performed to evaluate the performance of impact sound isolation of pilot samples using waste tire chips against light and heavy-weight impacter, which samples were installed over concrete slabs of an apartment housing. In this study, the experiments were performed by the impact sound level of floors in KS F 2810 "Method for field measurement of floor impact level". As results, a flooring structure using waste tire chips as a resilient mount, with no relation to chip's types, has enhanced performance by 1~2 degree in light impact sound isolation, while it has improvement in heavy impact sound isolation. And fiber-type chips have better performance than granule-type ones when they overlaid concrete slab with 15~20 mm of thickness. For the improvement of impact sound isolation, it is recommended that insulating materials should be applied at joints between floating floors and walls, or floating floors and a doorframes, and also waterproof papers should be used for the effective thickness of resilient mount.ent mount.

  • PDF

Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites

  • Hanif, Asad;Lu, Zeyu;Cheng, Yu;Diao, Su;Li, Zongjin
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.99-113
    • /
    • 2017
  • The effects of different lightweight functional fillers on the properties of cement-based composites are investigated in this study. The fillers include fly ash cenospheres (FACs) and glass micro-spheres (GMS15 and GMS38) in various proportions. The developed composites were tested for compressive, flexural and tensile strengths at 10 and 28-day ages. The results indicated that both FACs and GMS38 are excellent candidates for producing strong lightweight composites. However, incorporation of GMS15 resulted in much lower specific strength values (only up to $13.64kPa/kg\;m^3$) due to its thinner shell thickness and lower isostatic crushing strength value (2.07 MPa). Microstructural analyses further revealed that GMS38 and GMS15 were better suited for thermal insulating applications. However, higher weight fraction of the fillers in composites leads to increased porosity which might be detrimental to their strength development.

Experimental investigation of the effect of the addition of Aerosil 200 nanoparticles on the water absorption of polymer concrete

  • A.M. Fattahi;Babak Safaei;Elham Moaddab;Zahra Pezeshki
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.81-92
    • /
    • 2023
  • In this work, the effect of the addition of Aerosil 200, an insulating resin applied in many industries, on the water absorption of cement plast mixture has been experimentally evaluated. First, the preparation stages of cement plast mixture was evaluated based on corresponding standards and then, the effect of the addition of Aerosil 200 nanoparticles (NPs) to cement plast mixtures with sand weight percentage range of 0-0.1% on the variation of water absorption properties was evaluated based on National Standard Institution of Iran 20185 for Concrete Flooring Blocks - Requirements and Test Procedures. Based on the obtained results, it could be found that excessive addition of NPs did not affect the physical properties of the final product. Water absorption percentage was increased in the weight percentage of cement. By the increase of the amount of Aerosil 200 NPs in the prepared cement plast mixture, the percentage of water absorption in weight percentage of sand was decreased. Cement plast with NPs presented significantly lower water absorption than that without NPs.

현장 표준양생 공시체 관리함의 개발에 관한 연구 (A Study on Development of Curing Apparatus for In-place Standard Curing Specimen)

  • 김경민;전충근;손성운;김기철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술.기술논문발표회
    • /
    • pp.97-100
    • /
    • 2004
  • In-place curing box for specimens is used to cure the compressive strength specimens for control in place concrete. The box if composed of insulating chamber maintaining 20$\pm$3$^{\circ}C$ of temperature, in this paper, strength and temperature history of specimens cured at in plate curing box are investigated to verify field applicability. According to test results, air temperature at measured time shows large temperature variation and below zero, whereas, inside temperature of in place curing box maintains within 20$\pm$3$^{\circ}C$ due to temperature control function. For curing condition. temperature of specimens cured at outside shows large temperature deviation. specimens lured at in-place curing box is not affected by outer temperature.

  • PDF