Browse > Article
http://dx.doi.org/10.1007/s40069-016-0184-1

Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites  

Hanif, Asad (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology)
Lu, Zeyu (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology)
Cheng, Yu (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology)
Diao, Su (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology)
Li, Zongjin (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology)
Publication Information
International Journal of Concrete Structures and Materials / v.11, no.1, 2017 , pp. 99-113 More about this Journal
Abstract
The effects of different lightweight functional fillers on the properties of cement-based composites are investigated in this study. The fillers include fly ash cenospheres (FACs) and glass micro-spheres (GMS15 and GMS38) in various proportions. The developed composites were tested for compressive, flexural and tensile strengths at 10 and 28-day ages. The results indicated that both FACs and GMS38 are excellent candidates for producing strong lightweight composites. However, incorporation of GMS15 resulted in much lower specific strength values (only up to $13.64kPa/kg\;m^3$) due to its thinner shell thickness and lower isostatic crushing strength value (2.07 MPa). Microstructural analyses further revealed that GMS38 and GMS15 were better suited for thermal insulating applications. However, higher weight fraction of the fillers in composites leads to increased porosity which might be detrimental to their strength development.
Keywords
functional fillers; cement; composites; cenosphere; glass microsphere; mechanical properties; porosity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Lanzon, M., & Garcia-Ruiz, P. A. (2008). Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22(8), 1798-1806. doi:10.1016/j.conbuildmat.2007.05.006.   DOI
2 Li,Z. (2011). Advanced concrete technology.NewYork,NY:Wiley.
3 Lotfy, A., Hossain, K. M. A., & Lachemi, M. (2015). Lightweight self-consolidating concrete with expanded shale aggregates: Modelling and optimization. International Journal of Concrete Structures and Materials, 9(2), 185-206. doi:10.1007/s40069-015-0096-5.   DOI
4 Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall Ltd. doi:10.1007/978-94-015-7955-1.   DOI
5 Lu, Z., Xu, B., Zhang, J., Zhu, Y., Sun, G., & Li, Z. (2014). Preparation and characterization of expanded perlite/ paraffin composite as form-stable phase change material. Solar Energy, 108, 460-466. doi:10.1016/j.solener.2014.08.008.   DOI
6 Ma, H. (2014). Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. Journal of Porous Materials, 21(2), 207-215. doi:10.1007/s10934-013-9765-4.   DOI
7 Ma, H., Hou, D., Liu, J., & Li, Z. (2014). Estimate the relative electrical conductivity of C-S-H gel from experimental results. Construction and Building Materials, 71, 392-396. doi:10.1016/j.conbuildmat.2014.08.036.   DOI
8 Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computers & Concrete, 11(4), 317-336. doi:10.12989/cac.2013.11.4.317.   DOI
9 Miled, K., Sab, K., & Le Roy, R. (2007). Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials, 39(3), 222-240. doi:10.1016/j.mechmat.2006.05.008.   DOI
10 Mala, K., Mullick, A. K., Jain, K. K., & Singh, P. K. (2013). Effect of relative levels of mineral admixtures on strength of concrete with ternary cement blend. International Journal of Concrete Structures and Materials, 7(3), 239-249. doi:10.1007/s40069-013-0049-9.   DOI
11 Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., & Wallevik, O. H. (2015). Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials, 77, 307-316. doi:10.1016/j.conbuildmat.2014.12.064.   DOI
12 Palik, E. S. (1977). Specific surface area measurements on ceramic powders. Powder Technology, 18, 45-48.   DOI
13 Pereira, C. J., Rice, R. W., & Skalny, J. P. (1989). Pore structure and its relationship to properties of materials. In L. R. Roberts & J. P. Skalny (Eds.), Materials research society symposium proceedings (Vol. 137, pp. 3-21). Pittsbutrgh, PA: Materials Research Society.
14 Pichor, W. (2009). Properties of fiber reinforced cement composites with cenospheres from coal ash. Brittle Matrix Composites, 9, 245. doi:10.1533/9781845697754.245.   DOI
15 Rashad, A. M., Seleem, H. E. D. H., & Shaheen, A. F. (2014). Effect of silica fume and slag on compressive strength and abrasion resistance of HVFA concrete. International Journal of Concrete Structures and Materials, 8(1), 69-81. doi:10.1007/s40069-013-0051-2.   DOI
16 ACI 213. (2003). Guide for structural lightweight-aggregate concrete.
17 Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271-295. doi:10.1007/s40069-016-0157-4.   DOI
18 Abrams, D. A. (1927). Water-cement ratio as a basis of concrete quality. ACI Journal Proceedings, 23(2), 452-457.
19 ACI 216.1. (1997). Standard method for determining fire resistance of concrete and masonry construction assemblies.
20 ACI Committee 318. (2007). Building code requirements for structural concrete (ACI 318M-08) (Vol. 2007).
21 ASTM C 1437-99. (1999). Standard test method for flow of hydraulic cement mortar. American Society for Testing and Materials, 1-2. doi:10.1520/C1437-13.2
22 ASTM C230. (2003). Standard specification for flow table for use in tests of hydraulic cement. American Society for Testing and Materials. doi:10.1520/C0230
23 ASTM D790-10. (2010). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. American Society for Testing and Materials. doi:10.1520/D0790-10   DOI
24 Bouvard, D., Chaix, J. M., Dendievel, R., Fazekas, A., Letang, J. M., Peix, G., et al. (2007). Characterization and simulation of microstructure and properties of EPS lightweight concrete. Cement and Concrete Research, 37(12), 1666-1673. doi:10.1016/j.cemconres.2007.08.028.   DOI
25 emirboga, R., Orung, I., & Gu l, R. (2001). Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cement and Concrete Research, 31(11), 1627-1632. doi:10.1016/S0008-8846(01)00615-9.   DOI
26 Rice, R. W. (1998). Porosity of ceramics: Properties and applications. Boca Raton, FL: CRC Press.
27 Chandra, S., & Berntsson, L. (2002). Lightweight aggregate concrete: Science, technology, and applications. Norwich, NY: Noyes Publications/William Andrew Publishing.
28 Chavez-Valdez, A., Arizmendi-Morquecho, A., Vargas, G., Almanza, J. M., & Alvarez-Quintana, J. (2011). Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Materialia, 59(6), 2556-2562. doi:10.1016/j.actamat.2011.01.011.   DOI
29 Chen, B., & Liu, N. (2013). A novel lightweight concrete-fabrication and its thermal and mechanical properties. Construction and Building Materials, 44(2013), 691-698. doi:10.1016/j.conbuildmat.2013.03.091.   DOI
30 de Gennaro, R., Langella, A., D'Amore, M., Dondi, M., Colella, A., Cappelletti, P., et al. (2008). Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Applied Clay Science, 41(1-2), 61-72. doi:10.1016/j.clay.2007.09.008.   DOI
31 Topcu, I. B., & Isikdag, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1-3), 34-38. doi:10.1016/j.jmatprotec.2007.10.052.   DOI
32 Saradhi Babu, D., Ganesh Babu, K., & Wee, T. H. (2005). Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cement and Concrete Research, 35(6), 1218-1223. doi:10.1016/j.cemconres.2004.11.015.   DOI
33 Sharifi, Y., Afshoon, I., Firoozjaei, Z., & Momeni, A. (2016). Utilization of waste glass micro-particles in producing selfconsolidating concrete mixtures. International Journal of Concrete Structures and Materials. doi:10.1007/s40069-016-0141-z.   DOI
34 Spiesz, P., Yu, Q. L., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites-Part 2: Durability-related properties. Cement & Concrete Composites, 44(2013), 30-40. doi:10.1016/j.cemconcomp.2013.03.029.   DOI
35 Wang, J.-Y., Chia, K.-S., Liew, J.-Y. R., & Zhang, M.-H. (2013). Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement & Concrete Composites, 43, 39-47. doi:10.1016/j.cemconcomp.2013.06.006.   DOI
36 Wang, J. Y., Zhang, M. H., Li, W., Chia, K. S., & Liew, R. J. Y. (2012). Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction. Cement and Concrete Research, 42(5), 721-727. doi:10.1016/j.cemconres.2012.02.010.   DOI
37 Ducman, V., & Mladenovic, A. (2004). Alkali-silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 34(2004), 1809-1816. doi:10.1016/j.cemconres.2004.01.017.   DOI
38 3M Energy and Advanced Materials Division. 3M TM glass microspheres compounding and injection molding guidelines (2007). http://multimedia.3m.com/mws/media/426234O/3mtm-glass-microspheres-compounding-and-injmolding-guide.pdf
39 Gao, T., Jelle, B. P., Gustavsen, A., & Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study. Construction and Building Materials, 52(2014), 130-136. doi:10.1016/j.conbuildmat.2013.10.100.   DOI
40 Wang, J. Y., Yang, Y., Liew, J. Y. R., & Zhang, M. H. (2014). Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cement & Concrete Composites, 53, 178-186. doi:10.1016/j.cemconcomp.2014.07.006.   DOI
41 Kramar, D., & Bindiganavile, V. (2010). Mechanical properties and size effects in lightweight mortars containing expanded perlite aggregate. Materials and Structures, 44(4), 735-748. doi:10.1617/s11527-010-9662-0.   DOI
42 Hanif, A., Diao, S., Lu, Z., Fan, T., & Li, Z. (2016). Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres-Mechanical and thermal insulating properties. Construction and Building Materials, 116, 422-430. doi:10.1016/j.conbuildmat.2016.04.134.   DOI
43 Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement-A review. Construction and Building Materials, 37, 452-461. doi:10.1016/j.conbuildmat.2012.07.071.   DOI
44 Katz, A. J., & Thompson, A. H. (1986). Quantitative prediction of permeability in porous rock. Physical Review B, 34(11), 8179-8181. doi:10.1103/PhysRevB.34.8179.   DOI
45 Ke, Y., Beaucour, A. L., Ortola, S., Dumontet, H., & Cabrillac, R. (2009). Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Construction and Building Materials, 23(8), 2821-2828. doi:10.1016/j.conbuildmat.2009.02.038.   DOI
46 Kim, S., Seo, J., Cha, J., & Kim, S. (2013). Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials, 40, 501-505. doi:10.1016/j.conbuildmat.2012.11.046.   DOI
47 Kramar, D., & Bindiganavile, V. (2013). Impact response of lightweight mortars containing expanded perlite. Cement & Concrete Composites, 37(2013), 205-214. doi:10.1016/j.cemconcomp.2012.10.004.   DOI
48 Kwan, A. K. H., & Chen, J. J. (2013). Adding fly ash microsphere to improve packing density, flowability and strength of cement paste. Powder Technology, 234(2013), 19-25. doi:10.1016/j.powtec.2012.09.016.   DOI
49 Woignier, T., & Phalippou, J. (1988). Mechanical strength of silica aerogels. Journal of Non-Crystalline Solids, 100(1-3), 404-408. doi:10.1016/0022-3093(88)90054-3.   DOI
50 Washburn, E. W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 7(4), 115-116. doi:10.1073/pnas.7.4.115.   DOI
51 Wu, Y., Wang, J.-Y., Monteiro, P. J. M., & Zhang, M.-H. (2015). Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Construction and Building Materials, 87, 100-112. doi:10.1016/j.conbuildmat.2015.04.004.   DOI
52 Xu, B., Ma, H., & Hu, C. (2015). Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Materials and Structures. doi:10.1617/s11527-015-0578-6.   DOI
53 Yu, Q. L., Spiesz, P., & Brouwers, H. J. H. (2013). Development of cement-based lightweight composites-Part 1: Mix design methodology and hardened properties. Cement & Concrete Composites, 44(2013), 17-29. doi:10.1016/j.cemconcomp.2013.03.030.   DOI