• Title/Summary/Keyword: Insulated Gate Bipolar Transistor

Search Result 160, Processing Time 0.025 seconds

Study on changes in electrical and switching characteristics of NPT-IGBT devices by fast neutron irradiation

  • Hani Baek;Byung Gun Park;Chaeho Shin;Gwang Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3334-3341
    • /
    • 2023
  • We studied the irradiation effects of fast neutron generated by a 30 MeV cyclotron on the electrical and switching characteristics of NPT-IGBT devices. Fast neutron fluence ranges from 2.7 × 109 to 1.82 × 1013 n/cm2. Electrical characteristics of the IGBT device such as I-V, forward voltage drop and additionally switching characteristics of turn-on and -off were measured. As the neutron fluence increased, the device's threshold voltage decreased, the forward voltage drop increased significantly, and the turn-on and turn-off time became faster. In particular, the delay time of turn-on switching was improved by about 35% to a maximum of about 39.68 ns, and that of turn-off switching was also reduced by about 40%-84.89 ns, showing a faster switching.

Analysis of Electrical Characteristics of Dual Gate IGBT for Electrical Vehicle (전기자동차용 이중 게이트 구조를 갖는 전력 IGBT소자의 전기적인 특성 분석)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • IGBT (Insulated Gate Bipolar Transistor) device is a device with excellent current conducting capability, it is widely used as a switching device power supplies, converters, solar inverter, household appliances or the like, designed to handle the large power. This research was proposed 1200 class dual gate IGBT for electrical vehicle. To compare the electrical characteristics, The planar gate IGBT and trench gate IGBT was designd with same design and process parameters. And we carried to compare electrical characteristics about three devices. As a result of analyzing electrical characteristics, The on state voltage drop charateristics of dual gate IGBT was superior to those of planar IGBT and trench IGBT. Therefore, Aspect to Energy Loss, dual gate IGBT was efficiency. The breakdown volgate and threshold voltage of planar, trench and dual gate IGBT were 1460V and 4V.

Design and Analysis of Insulator Gate Bipolor Transistor (IGBT) with SiO2/P+ Collector Structure Applicable to 1700 V High Voltage (SiO2/P+ 컬렉터 구조를 가지는 1700 V급 고전압용 IGBT의 설계 및 해석에 관한 연구)

  • Lee Han-Sin;Kim Yo-Han;Kang Ey-Goo;Sung Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.907-911
    • /
    • 2006
  • In this paper, we propose a new structure that improves the on-state voltage drop and switching speed in Insulated Gate Bipolar Transistors(IGBTs), which can be widely used in high voltage semiconductors. The proposed structure is unique in that the collector area is divided by $SiO_2$, whereas the conventional IGBT has a planar P+ collector structure. The process and device simulation results show remarkably improved on-state and switching characteristics. Also, the current and electric field distribution indicate that the segmented collector structure has increased electric field near the $SiO_2$ corner, which leads to an increase of electron current. This results in a decrease of on-state resistance and voltage drop to $30%{\sim}40%$. Also, since the area of the P+ region is decreased compared to existing structures, the hole injection decreases and leads to an increase of switching speed to 30 %. In spite of some complexity in process procedures, this structure can be manufactured with remarkably improved characteristics.

A Study of The Electrical Characteristics of Small Fabricated LTEIGBTs for The Smart Power ICs (스마트 파워 IC에의 활용을 위한 소형 LTEIGBT의 제작과 전기적인 특성에 관한 연구)

  • 오대석;김대원;김대종;염민수;강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.338-341
    • /
    • 2002
  • A new small size Lateral Trench Electrode Insulated Gate Bipolar Transistor (LTEIGBT) is proposed and fabricated to improve the characteristics of device. The entire electrode of LTEIGBT is placed to trench type electrode. The LTEIGBT is designed so that the width of device is 19$\mu\textrm{m}$. The latch-up current density of the proposed LTEIGBT is improved by 10 and 2 times with those of the conventional LIGET and LTIGBT The forward blocking voltage of the LTEIGBT is 130V. At the same size, those of conventional LIGBT and LTIGBT are 60V and 100V, respectively. Because that the electrodes of the proposed device is formed of trench type, the electric field in the device are crowded to trench oxide. We fabricated He proposed LTEIGBT after the device and process simulation was finished. When the gate voltage is applied 12V, the forward conduction currents of the proposed LTEIGBT and the conventional LIGBT are 80mA and 70mA, respectively, at the same breakdown voltage of 150V,

  • PDF

A Study on Effective Control Methodology for DC/DC Converter (DC/DC 컨버터의 효율적인 제어기법 연구)

  • Lho, Young Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.756-759
    • /
    • 2014
  • DC/DC converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. The converters can be applied in the regenerative braking of DC motors to return energy back to the supply, resulting in energy savings for the systems at periodic intervals. The fundamental converter studied here consists of an IGBT (Insulated Gate Bipolar mode Transistor), an inductor, a capacitor, a diode, a PWM-IC (Pulse Width Modulation Integrated Circuit) controller with oscillator, amplifier, and comparator. The PWM-IC is a core element and delivers the switching waveform to the gate of the IGBT in a stable manner. Display of the DC/DC converter output depends on the IGBT's changes in the threshold voltage and PWM-IC's pulse width. The simulation was conducted by PSIM software, and the hardware of the DC/DC converter was also implemented. It is necessary to study the fact that the output voltage depends on the duty rate of D, and to compare the output of experimental result with the theory and the simulation.

A Study on Output Characteristics of the CO2 Laser by DC-DC Converter System (DC-DC Converter System에 의한 CO2 레이저 출력 특성에 대한 연구)

  • Kim, Geun-Yong;Chung, Hyun-Ju;Min, Byoung-Dae;Kim, Yong-Cheol;Lee, Yu-Soo;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1816-1819
    • /
    • 2002
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication, communications, remote sensing and military purpose etc. It is important to control the laser output power in those fields. In this paper, current resonant half-bridge inverter and Cockcraft-Walton circuit are used to vary the laser output power. This laser power supply is designed and fabricated which has less switching losses and compact size. Also we used an IGBT(Insulated Gate Bipolar Transistor) as a switching device of a power supply and PIC one-chip microprocessor are used to control the gate signal of the IGBT precisely. We investigated the output characteristics of this CO2 laser. As a result, the maximum laser output power of 26[W] is obtained at the resonant frequency of about 13[kHz].

  • PDF

파워디바이스 칩의 기술동향과 전망

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.280
    • /
    • pp.64-70
    • /
    • 2000
  • 파워디바이스는 산업$\cdot$전력$\cdot$교통$\cdot$정보 등 여러 분야에서 사용되고 그 기기들의 성능은 이 파워디바이스의 성능에 의해 크게 좌우된다. 특히 고도 정보화시대가 되는 21세기에는 전력수요가 점점 더 증가될 것이기 때문에 인버터화 등에 의한 생에너지 대책과 클린에너지 등에 의한 신에너지의 창출이 중요한 과제가 되고 있다. 한편, 지구환경 보호면에서 전기자동차 등의 환경고려형 장치의 보급이 활발해질 것이 예상된다. 이와 같은 사회환경 속에서 파워 일렉트로닉스를 지탱하는 소자로서 파워디바이스는 점점 더 그 역할의 중요성이 커지고 있다. 최근의 파워디바이스로서는 디스크리트, 모듈, IPM(Intelligent Power Module)등 여러 가지의 디바이스가 출현하고 있는데 그 성능을 결정하는 중심이 되는 것이 파워디바이스 칩이다. 파워디바이스 칩 자신도 급속히 진화하여 현재는 MOS계 파워디바이스 칩이 주류를 이루고 있다. 그 중에서도 사용하기 쉽다는 면에서 MOSFET와 IGBT(Insulated Gate Bipolar Transistor)가 주로 실용화되고 있으며, 미세가공기술과 라이프타임 제어기술의 진전에 따라 현저한 성능개선이 진행되고 있다. 한편, 공업용 대용량인버터나 전력응용에서 요구되는 고내압$\cdot$대용량 영역에서는 당분간 저손실이라는 의미에서 바이폴라계의 사이리스터형 디바이스가 주류로 사용되고, 이 영역에서는 GTO에 대체하는 소자로서 GCT(Gate Commutated Turn-off)사이리스터가 개발되어 그 응용이 확대될 것이 기대되고 있다. 또한 전압형 인버터장치에서는 IGBT와 GCT등의 스위칭디바이스와 함께 환류용 다이오드(FWD)가 필요하며 이 FWD의 특징 개선도 스위칭디바이스의 개선과 병행하여 추진되고 있다.

  • PDF

A Novel Lateral Trench Electrode IGBT for Suprior Electrical Characteristics (인텔리전트 파워 IC의 구현을 위한 횡형 트렌치 전극형 IGBT의 제작 및 그 전기적 특성에 관한 연구)

  • 강이구;오대석;김대원;김대종;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.9
    • /
    • pp.758-763
    • /
    • 2002
  • A new small size Lateral Trench Electrode Insulated Gate Bipolar Transistor (LTEIGBT) is proposed and fabricated to improve the characteristics of device. The entire electrode of LTEIGBT is placed to trench type electrode. The LTEIGBT is designed so that the width of device is 19w. The latch-up current density of the proposed LTEIGBT is improved by 10 and 2 times with those of the conventional LIGBT and LTIGBT. The forward blocking voltage of the LTEIGBT is 130V. At the same size, those of conventional LIGBT and TIGBT are 60V and 100V, respectively. Because the electrodes of the proposed device is formed of trench type, the electric field in the device are crowded to trench oxide. When the gate voltage is applied 12V, the forward conduction currents of the proposed LTEIGBT and the conventional LIGBT are 80mA and 70mA, respectively, at the same breakdown voltage of 150V.

A Study on Output Characteristics of the CO2 Laser with DC-DC Converter System (DC-DC Converter System에 의한 CO2 레이저 출력 특성에 관한 연구)

  • Kim, Geun-Yong;Chung, Hyun-Ju;Min, Byoung-Dae;Kim, Yong-Chul;Lee, Yu-Soo;Kim, Hee-Je
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.176-179
    • /
    • 2002
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication. communications, remote sensing and military purpose etc. It is important to control the laser output power in those fields. In this paper, current resonant half-bridge inverter and Cockcraft-Walton circuit are used to vary the laser output power. This laser power supply is designed and fabricated which has less switching losses and compact size. Also we used an IGBT(insulated Gate Bipolar Transistor) as a switching device of a power supply and PIC one-chip microprocessor are used to control the gate signal of the IGBT precisely. We investigated the output characteristics of this CO2 laser. As a result. the maximum laser output power of 26 [W] is obtained at the resonant frequency of about 13 [kHz].

  • PDF

A Study on Modeling of Leakage Current in ESS Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 ESS의 누설전류 모델링에 관한 연구)

  • Kim, Ji-Myung;Tae, Dong-Hyun;Lee, Il-Moo;Lim, Geon-Pyo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.810-818
    • /
    • 2021
  • A leakage current of ESS is classified mainly by the occurrence from a PCS(Power Conditioning System) section and an unbalanced grid current. The reason for the leakage current from the PCS section is a voltage change by IGBT (Insulated Gate Bipolar Transistor) switching and stray capacitance between the IGBT and heatsink. The leakage current caused by the grid unbalanced current flows to the ESS through the neutral line of grid-connected transformer for the ESS with a three limb iron type of Yg-wire connection. This paper proposes a mechanism for the occurrence of leakage current caused by stray capacitance, which is calculated using the heatsink formula, from the aspect of the PCS section and grid unbalance current. Based on the proposed mechanisms, this study presents the modeling of the leakage current occurrence using PSCAD/EMTDC S/W and evaluates the characteristics of leakage currents from the PCS section and grid unbalanced current. From the simulation result, the leakage current has a large influence on the battery side by confirming that the leakage current from the PCS is increased from 7[mA] to 34[mA], and the leakage current from an unbalanced load to battery housing is increased from 3.96[mA] to 10.76[mA] according to the resistance of the housings and the magnitude of the ground resistance.