Abstract
In this paper, we propose a new structure that improves the on-state voltage drop and switching speed in Insulated Gate Bipolar Transistors(IGBTs), which can be widely used in high voltage semiconductors. The proposed structure is unique in that the collector area is divided by $SiO_2$, whereas the conventional IGBT has a planar P+ collector structure. The process and device simulation results show remarkably improved on-state and switching characteristics. Also, the current and electric field distribution indicate that the segmented collector structure has increased electric field near the $SiO_2$ corner, which leads to an increase of electron current. This results in a decrease of on-state resistance and voltage drop to $30%{\sim}40%$. Also, since the area of the P+ region is decreased compared to existing structures, the hole injection decreases and leads to an increase of switching speed to 30 %. In spite of some complexity in process procedures, this structure can be manufactured with remarkably improved characteristics.