• Title/Summary/Keyword: Instruction dependencies

Search Result 17, Processing Time 0.024 seconds

PASC Processor Architecture for Enhanced Loop Execution (루프를 효과적으로 처리하는 PASC 프로세서 구조)

  • Ji, Seung-Hyeon;Park, No-Gwang;Jeon, Jung-Nam;Kim, Seok-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1225-1240
    • /
    • 1999
  • This paper proposes PASC(PArtitioned SCHeduler) processor architecture that equips with a number of functional unit and an individual scheduler paris. Every scheduler of the PASC processor can determine whether a unit instruction can be issued to the associated functional unit or it is to be waited until next cycle caused by a resource collision or data dependencies. In the PASC processor, only the functional unit with a resource collision or data dependencies waits by executing a NOP(No OPeration) instruction and the other functional units execute their own instructions. Therefore we can expect the code compaction effect on the PASC processor. Thus, the last instruction of a loop at certain iteration and the very first instruction of the loop at the next iteration can be scheduled simultaneously if the two instructions do not incur any resource collision or data dependencies. Therefore, we can expect that such two instructions without any resource collision and data dependencies are packed into the same very long instruction word and thus, the two instructions are executed concurrently at run time. As a result, we can shorten execution cycles of a loop comparing to the execution of the loop on a traditional VLIW or SVLIW processor architecture. Simulation result also promises faster execution of loops on a PASC processor architecture than those on a VLIW and SVLIW processor architecture.

  • PDF

A Systematic Generation of Register-Reuse Chains (레지스터 재활용 사슬의 체계적 생성)

  • Lee, Hyuk-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1564-1574
    • /
    • 1999
  • In order to improve the efficiency of optimizing compilers, integration of register allocation and instruction scheduling has been extensively studied. One of the promising integration techniques is register allocation based on register-reuse chains. However, the generation of register-reuse chains in the previous approach was not completely systematic and consequently it creates unnecessarily dependencies that restrict instruction scheduling. This paper proposes a new register allocation technique based on a systematic generation of register-reuse chains. The first phase of the proposed technique is to generate register-reuse chains that are optimal in the sense that no additional dependencies are created. Thus, register allocation can be done without restricting instruction scheduling. For the case when the optimal register-reuse chains require more than available registers, the second phase reduces the number of required registers by merging the register-reuse chains. Chain merging always generates additional dependencies and consequently enforces the execution order of instructions. A heuristic is developed for the second phase in order to reduce additional dependencies created by merging chains. For matrix multiplication program, the number of registers resulting from the first phase is small enough to fit into available registers for most basic blocks. In addition, it is shown that the restriction to instruction scheduling is reduced by the proposed merging heuristic of the second phase.

  • PDF

An optimized superscalar instruction issue architecture using the instruction buffer (명령어 버퍼를 이용한 최적화된 수퍼스칼라 명령어 이슈 구조)

  • 문병인;이용환;안상준;이용석
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.43-52
    • /
    • 1997
  • Processors using the superscalar rchitecture can achieve high performance by executing multipel instructions in a clock cycle. It is made possible by having multiple functional units and issuing multiple instructions to functional units simultaneously. But instructions can be dependent on one another and these dependencies prevent some instructions form being issued at the same cycle. In this paper, we designed an issue unit of a superscalar RISC microprocessor that can issue four instructions per cycle. The issue unit receives instructions form a prefetch unit, and issues them in order at a rate of as high as four instructions in one cycle for maximum utilization of functional units. By using an instruction buffer, the unit decouples instruction fetch and issue to improve instruction ussue rate. The issue unit is composed of an instruction buffer and an instruction decoder. The instruction buffer aligns and stores instructions from the prefetch unit, and sends the earliest four available isstructions to the instruction decoder. The instruction decoder decodes instructions, and issues them if they are free form data dependencies and necessary functional units and rgister file prots are available. The issue unit is described with behavioral level HDL (lhardware description language). The result of simulation using C programs shows that instruction issue rate is improved as the instruction buffer size increases, and 12-entry instruction buffer is found to be optimum considering performance and hardware cost of the instruction buffer.

  • PDF

A Theoretical Superscalar Microprocessor Performance Model with Limited Functional Units Using Instruction Dependencies (한정된 연산유닛에서 명령어 종속성을 이용하는 수퍼스칼라 프로세서의 이론적 성능 모델)

  • Lee, Jong-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.423-428
    • /
    • 2010
  • In the initial design phase of superscalar microprocessors, a performance model is necessary. A theoretic performance model is very useful since performance for various architecture parameters can be obtained by simply computing equations, without repeating simulations, Previous studies established theoretic performance models using the relation between the instruction window size and the issue width, with the penalties due to branch mispredictions and cache misses. However, the study was intended for unlimited number of functional units, which is insufficient for the real case application. This paper proposes a superscalar microprocessor theoretical performance model which also works for the limited functional units. To enhance the accuracy of our limited functional unit model, instruction dependency rates are employed. By using trace-driven data of SPEC 2000 integer programs as input, this paper shows that the theoretically computed performance of superscalar microprocessor with limited number of functional units is quite similar to the measured performance.

Performance Improvement Through Aggressive Instruction Packing (적극적인 명령어 압축을 통한 성능향상)

  • Ji, Seung-Hyeon;Kim, Seok-Il
    • The KIPS Transactions:PartA
    • /
    • v.9A no.2
    • /
    • pp.231-240
    • /
    • 2002
  • This paper proposes balancing scheduling effort more evenly between the compiler and the processor, by introducing independently scheduled VLIW instructions. Aggressively Packed VLIW (APVLIW) processor is aimed specifically at independent scheduling Very Long Instruction Word(VLIW) instructions with dependency information. The APVLIW processor independently schedules earth instruction within long instructions using functional unit and dynamic scheduler pairs. Every dynamic scheduler dynamically checks far data dependencies and resource collisions while scheduling each instruction. This scheduling is especially effective in applications containing loops. We simulate the architecture and show that the APVLIW processor performs significantly better than the VLIW processor for a wide range of cache sizes and across various numerical benchmark applications.

Instruction Queue Architecture for Low Power Microprocessors (마이크로프로세서 전력소모 절감을 위한 명령어 큐 구조)

  • Choi, Min;Maeng, Seung-Ryoul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.56-62
    • /
    • 2008
  • Modern microprocessors must deliver high application performance, while the design process should not subordinate power. In terms of performance and power tradeoff, the instructions window is particularly important. This is because a large instruction window leads to achieve high performance. However, naive scaling conventional instruction window can severely affect the complexity and power consumption. This paper explores an architecture level approach to reduce power dissipation. We propose a low power issue logic with an efficient tag translation. The direct lookup table (DTL) issue logic eliminates the associative wake-up of conventional instruction window. The tag translation scheme deals with data dependencies and resource conflicts by using bit-vector based structure. Experimental results show that, for SPEC2000 benchmarks, the proposed design reduces power consumption by 24.45% on average over conventional approach.

A Vectorization Technique at Object Code Level (목적 코드 레벨에서의 벡터화 기법)

  • Lee, Dong-Ho;Kim, Ki-Chang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1172-1184
    • /
    • 1998
  • ILP(Instruction Level Parallelism) processors use code reordering algorithms to expose parallelism in a given sequential program. When applied to a loop, this algorithm produces a software-pipelined loop. In a software-pipelined loop, each iteration contains a sequence of parallel instructions that are composed of data-independent instructions collected across from several iterations. For vector loops, however the software pipelining technique can not expose the maximum parallelism because it schedules the program based only on data-dependencies. This paper proposes to schedule differently for vector loops. We develop an algorithm to detect vector loops at object code level and suggest a new vector scheduling algorithm for them. Our vector scheduling improves the performance because it can schedule not only based on data-dependencies but on loop structure or iteration conditions at the object code level. We compare the resulting schedules with those by software-pipelining techniques in the aspect of performance.

  • PDF

A Hybrid Value Predictor using Static and Dynamic Classification in Superscalar Processors (슈퍼스칼라 프로세서에서 정적 및 동적 분류를 사용한 혼합형 결과 값 예측기)

  • 김주익;박홍준;조영일
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.569-578
    • /
    • 2003
  • Data dependencies are one of major hurdles to limit ILP(Instruction Level Parallelism), so several related works have suggested that the limit imposed by data dependencies can be overcome to some extent with use of the data value prediction. Hybrid value predictor can obtain the high prediction accuracy using advantages of various predictors, but it has a defect that same instruction has overlapping entries in all predictor. In this paper, we propose a new hybrid value predictor which achieves high performance by using the information of static and dynamic classification. The proposed predictor can enhance the prediction accuracy and efficiently decrease the prediction table size of predictor, because it allocates each instruction into single best-suited predictor during the fetch stage by using the information of static classification. Also, it can enhance the prediction accuracy because it selects a best- suited prediction method for the “Unknown”pattern instructions by using the dynamic classification mechanism. Simulation results based on the SimpleScalar/PISA tool set and the SPECint95 benchmarks show the average correct prediction rate of 85.1% by using the static classification mechanism. Also, we achieve the average correction prediction rate of 87.6% by using static and dynamic classification mechanism.

Implementation of Digital Filters on Pipelined Processor with Multiple Accumulators and Internal Datapaths

  • Hong, Chun-Pyo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.44-50
    • /
    • 1999
  • This paper presents a set of techniques to automatically find rate optimal or near rate optimal implementation of shift-invariant flow graphs on pipelined processor, in which pipeline processor has multiple accumulators and internal datapaths. In such case, the problem to be addressed is the scheduling of multiple instruction streams which control all of the pipeline stages. The goal of an automatic scheduler in this context is to rearrange the order of instructions such that they are executed with minimum iteration period between successive iteration of defining flow graphs. The scheduling algorithm described in this paper also focuses on the problem of removing the hazards due to inter-instruction dependencies.

  • PDF

Games Application Methodology for History Education: Case Study of Developing a Serious Game for History Education (역사교육에 대한 게임 활용 방안: 기능성 게임 개발사례를 중심으로)

  • Jung, ChanYong
    • Journal of Korea Game Society
    • /
    • v.18 no.6
    • /
    • pp.29-38
    • /
    • 2018
  • Although computer games seem to be efficient tools for facilitating and supporting situated learning in Europe, GBL(game based learning) is less likely in Korea. The objectives of this paper are to address the causes of the problem and evaluate a serious game for history GBL. We review various cases of history GBL projects in European School Net, commercial games and serious games which are related to history. We draw a demand of our game's structural type, learning criterion, basic model of instruction, and executable prototype from the analysis results. Scene management educators pursue and dependencies of turning points in the history are critical differentiator. An evaluation team of educators, learners, and edu-game managers evaluates that the prototype is suitable model for application in history instruction.